色谱

• 研究论文 • 上一篇    下一篇

梯度液相色谱中任意等度、线性和阶梯梯度组合下的保留时间公式

郝卫强1*, 狄斌2, 杨永兵1, 陈强1, 王俊德3   

  1. 1. 南京大学常州高新技术研究院, 江苏 常州 213164; 2. 中国药科大学药物分析教研室, 江苏 南京 210009; 3. 中国科学院大连化学物理研究所, 辽宁 大连 116023
  • 收稿日期:2009-12-16 修回日期:2010-02-16 出版日期:2010-06-28 发布日期:1980-06-25
  • 通讯作者: 郝卫强

General retention time formulae for gradient liquid chromatography with any combination of isocratic, linear and stepwise gradients

HAO Weiqiang1*, DI Bin2, YANG Yongbing1, CHEN Qiang1, WANG Junde3   

  1. 1. Changzhou High-Tech Research Institute of Nanjing University, Changzhou 213164, China; 2. Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; 3. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received:2009-12-16 Revised:2010-02-16 Online:2010-06-28 Published:1980-06-25
  • Contact: HAO Weiqiang1

摘要: 基于线性溶剂强度模型,应用特征线分析的方法求解梯度洗脱模式下的理想液相色谱模型。在考虑到梯度延迟时间会对溶质的保留时间造成影响的情况下,得到适合于梯度液相色谱中任意等度、线性和阶梯梯度组合条件下的保留时间推导公式。应用这些公式计算任意的梯度条件下的保留时间,并将得到的结果与数值计f算的结果进行比较,二者完全一致,从而验证了推导得到的保留时间公式的正确性。由于这些公式具有形式简单、适用范围广等优点,因此可方便地应用于实际应用中,具有较高的实用价值。

关键词: 保留时间, 等度洗脱, 计算公式, 阶梯梯度洗脱 , 线性梯度洗脱, 液相色谱

Abstract: The ideal model of liquid chromatography in gradient elution was solved by using the characteristic approach on the assumption of a linear solvent strength model. By considering the influence of the dwelling time of the chromatographic system on retention time, the retention time formulae suited for any combination of isocratic, linear and stepwise gradients were obtained. It was found that the values of the retention time obtained from these formulae were in well accordance with those computed by using the finite-difference method, which confirms the validity of the formulae. Due to the simplicity and broad scope of applications, these formulae can be easily applied in practice.

Key words: formulae, isocratic elution, linear gradient elution, retention time, stepwise gradient elution , liquid chromatography