色谱 ›› 2020, Vol. 38 ›› Issue (12): 1357-1362.DOI: 10.3724/SP.J.1123.2020.08016

• 研究快报 • 上一篇    下一篇

核壳硅碳复合微球固定相的制备及其在糖类分离中的应用

赵兴云1,2, 张红燕1, 周孝禹1,2, 王莉1, 万丽红1, 吴仁安1,*()   

  1. 1.中国科学院大连化学物理研究所高分辨质谱技术研究组, 辽宁 大连 116023
    2.中国科学院大学, 北京 100049
  • 收稿日期:2020-08-28 出版日期:2020-12-08 发布日期:2020-12-01
  • 通讯作者: 吴仁安
  • 基金资助:
    国家自然科学基金(21675156);国家自然科学基金(21974138)

Preparation of core-shell silica-carbon composite microspheres stationary phase and application in saccharide separation

ZHAO Xingyun1,2, ZHANG Hongyan1, ZHOU Xiaoyu1,2, WANG Li1, WAN Lihong1, WU Ren’an1,*()   

  1. 1. Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
    2. the University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-08-28 Online:2020-12-08 Published:2020-12-01
  • Contact: WU Ren’an
  • Supported by:
    National Natural Science Foundation of China(21675156);National Natural Science Foundation of China(21974138)

摘要:

采用一步法在二氧化硅(SiO2)表面涂覆酚醛树脂聚合物(PF),并在氮气气氛下碳化,制备了核壳硅碳复合微球(Sil@MC)固定相。实验对Sil@MC固定相进行形貌观察和孔结构分析,表明制备出的Sil@MC固定相具有良好的单分散性,包覆后的Sil@MC材料比表面积为302 m2/g,平均孔径为9.5 nm,孔容为0.63 cm3/g,说明通过共聚反应成功地将碳材料固定在二氧化硅上。将制备的Sil@MC材料作为HPLC固定相,采用匀浆法装柱,以乙腈-水(含0.1%(v/v)甲酸)作为流动相,发现Sil@MC色谱柱在高效液相色谱-质谱中可以实现4种极性糖类化合物(D-(+)-氨基葡萄糖盐酸盐、葡萄糖、D-(+)-海藻糖二水合物和棉子糖)的分离,然而未涂覆酚醛树脂的SiO2材料未能对这4种极性糖类化合物实现分离。实验进一步对Sil@MC固定相的性能进行了评价,代表性的低聚糖异构体松三糖和棉子糖、耐斯糖和水苏糖及乳寡糖异构体3'-唾液酸乳糖和6'-唾液酸乳糖、乳-N-四糖和乳-N-新四糖在Sil@MC色谱柱中被成功分离,峰形良好,展现了基于酚醛树脂衍生碳的核壳硅碳复合材料在在极性化合物色谱分离方面具有应用潜力。

关键词: 高效液相色谱-质谱, 固定相, 糖类分离, 纳米孔碳材料

Abstract:

In this study, core-shell mesoporous silica-carbon composite microspheres (Sil@MC) were prepared by one-step coating of the phenol formaldehyde polymer (PF) on SiO2 surface and by carbonizing the PF polymer under nitrogen atmosphere. The morphology observation of the Sil@MC stationary phase showed that it had good monodispersity. Surface area (302 m2/g), mean pore diameter (9.5 nm), and pore volume (0.63 cm3/g) of Sil@MC materials were also measured by pore structure analysis. The results showed that the Sil@MC was successfully immobilized on the silica particles via copolymerization and carbonization. As a stationary phase of HPLC, the Sil@MC column was filled by a slurry method. The Sil@MC materials formed after calcination of SiO2 coated with phenolic resin could be used for the separation of four polar sugar compounds (D-(+)-glucosamine hydrochloride, glucose, D-(+)-trehalose dihydrat and raffinose) with the mobile phase of acetonitrile-water (containing 0.1% (v/v) formic acid). However, the material formed by calcinating SiO2 without coating phenolic resin could not separate these polar sugar compounds by HPLC-MS. Finally, the representative oligosaccharide isomers of raffinose, melezitose and stachyose, nystose, and human milk oligosaccharide isomers, such as 3'-sialyllactose, 6'-sialyllactose and lacto-N-newtetraose, lacto-N-tetraose, were successfully separated by the Sil@MC column with good peak shapes. The results demonstrates that silica-carbon composites derived from phenolic resin have potential application in polar compounds chromatographic separation.

Key words: high performance liquid chromatography-mass spectrometry (HPLC-MS), stationary phase, saccharide separation, nanoporous carbon materials

中图分类号: