色谱 ›› 2020, Vol. 38 ›› Issue (3): 332-340.DOI: 10.3724/SP.J.1123.2019.10036
张文敏2, 冯遵梅2, 黄川辉2, 高佳1, 张兰1,2,*()
收稿日期:
2019-10-31
出版日期:
2020-03-08
发布日期:
2020-12-10
通讯作者:
张兰
作者简介:
张兰, Tel:(0591)22866135, E-mail:zlan@fzu.edu.cn基金资助:
ZHANG Wenmin2, FENG Zunmei2, HUANG Chuanhui2, GAO Jia1, ZHANG Lan1,2,*()
Received:
2019-10-31
Online:
2020-03-08
Published:
2020-12-10
Contact:
ZHANG Lan
Supported by:
摘要:
有机氯(OCPs)和拟除虫菊酯(PYs)是两类广泛使用的农药,对自然环境和人类健康具有极大危害。在本研究中,通过原位溶剂热聚合法制备了金属有机骨架/碳化氮纳米片(UiO-66/HOCN)复合材料涂覆的固相微萃取(SPME)纤维,该纤维拥有良好的稳定性,并对OCPs和PYs具有高效的萃取性能。将其与气相色谱-质谱(GC-MS)相结合,建立了用于OCPs和PYs检测的高灵敏分析方法。该方法对9种农药目标物表现出了令人满意的回收率和重现性,具有检出限低(0.03~0.30 ng/L)、线性范围宽(0.1~800.0 ng/L)和线性相关系数良好(≥ 0.9978)等优点。将所建立的方法用于实际红茶样品中农药残留的检测,成功地在实际样品中检测出了艾试剂(6.6 ng/L)、α-硫丹(54.7 ng/L)和联苯菊酯(185.8 ng/L)。实验结果表明,所建立的分析方法适用于复杂基质中农药残留的分析和监测。
张文敏, 冯遵梅, 黄川辉, 高佳, 张兰. 原位溶剂热聚合法制备金属有机骨架/碳化氮纳米片涂覆的固相微萃取纤维用于红茶中农药残留的高灵敏检测[J]. 色谱, 2020, 38(3): 332-340.
ZHANG Wenmin, FENG Zunmei, HUANG Chuanhui, GAO Jia, ZHANG Lan. In-situ solvothermal polymerization of metal-organic framework/carbon-nitrogen nanosheet-coated solid-phase microextraction fiber for highly sensitive detection of pesticide residues in black tea[J]. Chinese Journal of Chromatography, 2020, 38(3): 332-340.
Compound | Retention time/min | Quantitative ion (m/z) | Qualitative ions (m/z) |
Heptachlor (七氯) | 13.92 | 272 | 273, 272, 237 |
Aldrin (艾试剂) | 14.82 | 263 | 263, 255, 220 |
Heptachlor epoxide | 15.98 | 263 | 353, 263, 193 |
(环氧七氯) | |||
α-Chlordane (α-氯丹) | 17.01 | 373 | 375, 373, 272 |
p, p′-DDE (p, p′-滴滴伊) | 17.63 | 318 | 318, 246, 176 |
α-Endosulfan (α-硫丹) | 18.64 | 241 | 241, 206, 195 |
p, p′-DDD (p, p′-滴滴滴) | 18.92 | 235 | 235, 200, 165 |
p, p′-DDT (p, p′-滴滴涕) | 20.10 | 235 | 235, 200, 165 |
Bifenthrin (联苯菊酯) | 21.91 | 181 | 386, 241, 181 |
表1 9种农药的保留时间、定量离子及定性离子
Table 1 Retention times, quantitative ions and qualitative ions for the nine pesticides
Compound | Retention time/min | Quantitative ion (m/z) | Qualitative ions (m/z) |
Heptachlor (七氯) | 13.92 | 272 | 273, 272, 237 |
Aldrin (艾试剂) | 14.82 | 263 | 263, 255, 220 |
Heptachlor epoxide | 15.98 | 263 | 353, 263, 193 |
(环氧七氯) | |||
α-Chlordane (α-氯丹) | 17.01 | 373 | 375, 373, 272 |
p, p′-DDE (p, p′-滴滴伊) | 17.63 | 318 | 318, 246, 176 |
α-Endosulfan (α-硫丹) | 18.64 | 241 | 241, 206, 195 |
p, p′-DDD (p, p′-滴滴滴) | 18.92 | 235 | 235, 200, 165 |
p, p′-DDT (p, p′-滴滴涕) | 20.10 | 235 | 235, 200, 165 |
Bifenthrin (联苯菊酯) | 21.91 | 181 | 386, 241, 181 |
图1 UiO-66/HOCN复合材料中不同HOCN掺杂比例对9种农药的萃取性能(n=3)
Fig. 1 Extraction performance of UiO-66/HOCN composite materials with various contents of HOCN for the nine pesticides (n=3) Experimental conditions: pesticide concentration, 100.0 ng/L; extraction temperature, 50 ℃; extraction time, 40 min; stirring rate, 500 r/min; desorption temperature, 280 ℃; desorption time, 5 min.
图2 UiO-66/HOCN复合材料的(a)TEM、(b)XRD、(c)等温氮气吸附-脱附以及(d)孔径分布表征图
Fig. 2 (a) Transmission electron microscopy (TEM) image, (b) X-ray diffraction (XRD) pattern, (c) N2 adsorption-desorption isotherms, and (d) pore size distribution of UiO-66/HOCN composite materials
图4 (a) 萃取温度、(b)萃取时间和(c)搅拌速率对9种农药萃取效率的影响(n=3)
Fig. 4 Effects of (a) extraction temperature, (b) extraction time and (c) agitation speed on extraction efficiency of the nine pesticides (n=3) Experimental conditions were the same as those in Fig. 1. When one of the factors was investigated, all other factors remain the same.
图5 (a) 解吸温度和(b)解吸时间对9种农药萃取效率的影响(n=3)
Fig. 5 Effects of (a) desorption temperature and (b) desorption time on extraction efficiency of the nine pesticides (n=3) Experimental conditions were the same as those in Fig. 1. When one of the factors was investigated, all other factors remain the same.
Compound | Linear range/(ng/L) | R | LOD/(ng/L) | RSDs/% (n=3) | ||
Single fiber | Fibers of batch-to-batch | |||||
Intra-day | Inter-day | |||||
Heptachlor | 0.3-300.0 | 0.9996 | 0.1 | 4.9 | 6.8 | 7.2 |
Aldrin | 0.3-500.0 | 0.9997 | 0.1 | 4.5 | 4.5 | 6.2 |
Heptachlor epoxide | 0.3-300.0 | 0.9989 | 0.1 | 7.5 | 8.9 | 9.0 |
α-Chlordane | 0.5-300.0 | 0.9986 | 0.3 | 5.1 | 7.9 | 9.2 |
p, p′-DDE | 0.3-500.0 | 0.9978 | 0.1 | 4.5 | 8.2 | 8.3 |
α-Endosulfan | 0.3-800.0 | 0.9999 | 0.1 | 4.2 | 4.7 | 5.2 |
p, p′-DDD | 0.1-300.0 | 0.9999 | 0.03 | 4.3 | 6.4 | 7.8 |
p, p′-DDT | 0.1-300.0 | 0.9999 | 0.03 | 5.4 | 6.5 | 8.4 |
Bifenthrin | 0.8-500.0 | 0.9990 | 0.3 | 3.3 | 7.4 | 9.7 |
表2 所建立方法的线性范围、相关系数、检出限以及精密度
Table 2 Linear ranges, correlation coefficients (R), limits of detection (LODs), and precision of the proposed method
Compound | Linear range/(ng/L) | R | LOD/(ng/L) | RSDs/% (n=3) | ||
Single fiber | Fibers of batch-to-batch | |||||
Intra-day | Inter-day | |||||
Heptachlor | 0.3-300.0 | 0.9996 | 0.1 | 4.9 | 6.8 | 7.2 |
Aldrin | 0.3-500.0 | 0.9997 | 0.1 | 4.5 | 4.5 | 6.2 |
Heptachlor epoxide | 0.3-300.0 | 0.9989 | 0.1 | 7.5 | 8.9 | 9.0 |
α-Chlordane | 0.5-300.0 | 0.9986 | 0.3 | 5.1 | 7.9 | 9.2 |
p, p′-DDE | 0.3-500.0 | 0.9978 | 0.1 | 4.5 | 8.2 | 8.3 |
α-Endosulfan | 0.3-800.0 | 0.9999 | 0.1 | 4.2 | 4.7 | 5.2 |
p, p′-DDD | 0.1-300.0 | 0.9999 | 0.03 | 4.3 | 6.4 | 7.8 |
p, p′-DDT | 0.1-300.0 | 0.9999 | 0.03 | 5.4 | 6.5 | 8.4 |
Bifenthrin | 0.8-500.0 | 0.9990 | 0.3 | 3.3 | 7.4 | 9.7 |
Coating material | Linear range/(μg/L) | R | LODs/(ng/L) | RSDs/% | Ref. |
PDMS: polydimethylsiloxane; DVB: divinylbenzene; CAR: carboxen; PEG: polyethylene glycol. | |||||
UiO-66/HOCN | 0.1×10-3-0.8 | 0.9978-0.9999 | 0.03-0.30 | 3.3-9.7 | this study |
ZnO/g-C3N4 | 0.3×10-2-5.0 | 0.9981-0.9993 | 1.0-2.5 | 2.3-11.3 | [ |
PDMS | 0.1-500 | 0.9906-0.9988 | 40-410 | 3.2-11.3 | [ |
PDMS/DVB | 0.5-100 | 0.9901-0.9999 | 3-560 | <15 | [ |
DVB/CAR/PDMS | 1-100 | 0.9755-0.9997 | 200-400 | 7.2-24.6 | [ |
PEG | - | 0.9930-0.9990 | 3-145 | 4.2-10.0 | [ |
表3 本文方法与其他已报道方法的比较
Table 3 Comparison of the proposed method with other reported methods
Coating material | Linear range/(μg/L) | R | LODs/(ng/L) | RSDs/% | Ref. |
PDMS: polydimethylsiloxane; DVB: divinylbenzene; CAR: carboxen; PEG: polyethylene glycol. | |||||
UiO-66/HOCN | 0.1×10-3-0.8 | 0.9978-0.9999 | 0.03-0.30 | 3.3-9.7 | this study |
ZnO/g-C3N4 | 0.3×10-2-5.0 | 0.9981-0.9993 | 1.0-2.5 | 2.3-11.3 | [ |
PDMS | 0.1-500 | 0.9906-0.9988 | 40-410 | 3.2-11.3 | [ |
PDMS/DVB | 0.5-100 | 0.9901-0.9999 | 3-560 | <15 | [ |
DVB/CAR/PDMS | 1-100 | 0.9755-0.9997 | 200-400 | 7.2-24.6 | [ |
PEG | - | 0.9930-0.9990 | 3-145 | 4.2-10.0 | [ |
Compound | Background/(ng/L)(RSD/%) | Recoveries (RSDs) at three spiked levels/% | ||
8 ng/L | 30 ng/L | 100 ng/L | ||
* Not detected. | ||||
Heptachlor | n. d.* | 82.9 (6.1) | 87.5 (3.6) | 94.9 (4.9) |
Aldrin | 6.6 (5.7) | 92.9 (7.6) | 98.1 (5.2) | 98.8 (7.8) |
Heptachlor epoxide | n. d.* | 111.2 (5.2) | 109.5 (8.5) | 87.4 (7.5) |
α-Chlordane | n. d.* | 103.4 (2.5) | 100.3 (4.3) | 97.6 (6.3) |
p, p′-DDE | n. d.* | 90.2 (7.1) | 94.3 (5.6) | 99.5 (4.3) |
α-Endosulfan | 54.7 (6.3) | 93.2 (4.1) | 98.5 (4.2) | 111.0 (3.7) |
p, p′-DDD | n. d.* | 85.5 (3.5) | 89.4 (7.3) | 105.0 (8.9) |
p, p′-DDT | n. d.* | 92.4 (4.0) | 90.2 (3.9) | 106.0 (6.4) |
Bifenthrin | 185.8 (2.5) | 102.8 (3.5) | 106.1 (4.7) | 117.0 (4.7) |
表4 9种农药在实际红茶样品中的加标回收率及精密度(n=3)
Table 4 Recoveries and RSDs of the nine pesticides spiked in a black tea sample (n=3)
Compound | Background/(ng/L)(RSD/%) | Recoveries (RSDs) at three spiked levels/% | ||
8 ng/L | 30 ng/L | 100 ng/L | ||
* Not detected. | ||||
Heptachlor | n. d.* | 82.9 (6.1) | 87.5 (3.6) | 94.9 (4.9) |
Aldrin | 6.6 (5.7) | 92.9 (7.6) | 98.1 (5.2) | 98.8 (7.8) |
Heptachlor epoxide | n. d.* | 111.2 (5.2) | 109.5 (8.5) | 87.4 (7.5) |
α-Chlordane | n. d.* | 103.4 (2.5) | 100.3 (4.3) | 97.6 (6.3) |
p, p′-DDE | n. d.* | 90.2 (7.1) | 94.3 (5.6) | 99.5 (4.3) |
α-Endosulfan | 54.7 (6.3) | 93.2 (4.1) | 98.5 (4.2) | 111.0 (3.7) |
p, p′-DDD | n. d.* | 85.5 (3.5) | 89.4 (7.3) | 105.0 (8.9) |
p, p′-DDT | n. d.* | 92.4 (4.0) | 90.2 (3.9) | 106.0 (6.4) |
Bifenthrin | 185.8 (2.5) | 102.8 (3.5) | 106.1 (4.7) | 117.0 (4.7) |
图6 实际红茶样品和加标红茶样品的色谱图
Fig. 6 Chromatograms of a black tea sample and a black tea sample spiked with standards Experimental conditions were the same as those in Fig. 1. Spiked level: 30 ng/L of each of the nine pesticides. Peak identifications: 1. heptachlor; 2. aldrin; 3. heptachlor epoxide; 4. α-chlordane; 5. p, p′-DDE; 6. α-endosulfan; 7. p, p′-DDD; 8. p, p′-DDT; 9. bifenthrin.
|
[1] | 杜洁, 孙鹏超, 张梦露, 连泽特, 原凤刚, 王刚. 多孔氮化硼掺杂聚吡咯-2,3,3-三甲基吲哚固相微萃取涂层的制备及多环芳烃的检测[J]. 色谱, 2023, 41(9): 789-798. |
[2] | 岳超, 赵超群, 毛思浩, 王展华, 施贝, 徐欣丰, 梁晶晶. 通过式固相萃取净化-超高效液相色谱-串联质谱法测定液体乳中10种氨基甲酸酯类农药残留[J]. 色谱, 2023, 41(9): 807-813. |
[3] | 李洁, 鞠香, 王艳丽, 田其燕, 梁秀清, 李海霞, 刘艳明. QuEChERS-在线凝胶渗透色谱-气相色谱-串联质谱法高通量筛查动物源性食品中的多农药残留[J]. 色谱, 2023, 41(7): 610-621. |
[4] | 解伟亚, 朱晓晗, 梅宏成, 郭洪玲, 李亚军, 黄阳, 秦皓, 朱军, 胡灿. 基于功能材料的固相微萃取技术及其在法庭科学领域中的应用[J]. 色谱, 2023, 41(4): 302-311. |
[5] | 陈佳, 刘玉龙, 徐斌, 刘勤, 谢剑炜. 顶空固相微萃取-气相色谱-质谱法快速筛查油性基质中化学武器公约相关化合物[J]. 色谱, 2023, 41(4): 348-358. |
[6] | 王娇, 吴桐, 王新全, 刘真真, 徐浩, 汪志威, 狄珊珊, 赵慧宇, 齐沛沛. QuEChERS-液相色谱-串联质谱法测定中草药中22种三唑类农药残留[J]. 色谱, 2023, 41(4): 330-338. |
[7] | 张续, 韩林学, 邱天, 胡小键, 朱英, 杨艳伟. 固相萃取-超高效液相色谱-串联质谱法测定人尿中苯氧乙酸除草剂和有机磷、拟除虫菊酯农药代谢物[J]. 色谱, 2023, 41(3): 224-232. |
[8] | 张蓉, 陈跃, 郑培, 代莹, 李莎莎, 贾颖异, 谢然, 王金花. 凝胶渗透色谱-气相色谱-离子阱质谱法测定桔梗原药和当归提取物中101种农药残留[J]. 色谱, 2023, 41(2): 178-186. |
[9] | 翟洪稳, 马红玉, 曹梅荣, 张明星, 马俊美, 张岩, 李强. 在线样品制备技术耦合液相色谱-质谱系统在食品危害物检测中的应用进展[J]. 色谱, 2023, 41(12): 1062-1072. |
[10] | 杨成, 史艳梅, 庞田田, 刘晓冰, 张至玉, 胡锴, 张书胜. 磺酸功能化共价有机骨架固相微萃取纤维的制备及其在小鼠脑部神经递质分析中的应用[J]. 色谱, 2023, 41(10): 911-920. |
[11] | 张文敏, 刘冠城, 马文德, 方敏, 张兰. 共价有机骨架材料在有毒有害物质萃取中的应用进展[J]. 色谱, 2022, 40(7): 600-609. |
[12] | 张贤钊, 甄大卫, 刘丰茂, 彭庆蓉, 王宗义. 植物源生物炭材料的制备及其在农药残留领域中的应用进展[J]. 色谱, 2022, 40(6): 499-508. |
[13] | 张权, 毕珊, 吴玉田, 李磊, 周贻兵, 刘利亚, 刘文政, 陈庆园, 周雪, 郭华. Sin-QuEChERS Nano净化柱结合气相色谱-串联质谱法快速筛查石斛中84种农药残留[J]. 色谱, 2022, 40(6): 565-575. |
[14] | 许芮菡, 谢倩文, 李旭军, 赵红丽, 刘学彬, 魏远隆, 邱爱东. 基于多壁碳纳米管改进QuEChERS法结合气相色谱-串联质谱检测茶叶中10种拟除虫菊酯类农药残留[J]. 色谱, 2022, 40(5): 469-476. |
[15] | 李想, 王丽梅, 宋璐璐, 万政策, 寇婧, 张明烨, 吕永曼, 王友洁, 梅素容. 固相萃取-气相色谱-串联质谱法同时测定武汉市普通人群血清中35种有机氯农药与多氯联苯[J]. 色谱, 2022, 40(5): 461-468. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||