色谱 ›› 2020, Vol. 38 ›› Issue (6): 639-646.DOI: 10.3724/SP.J.1123.2019.10012
收稿日期:
2019-10-12
出版日期:
2020-06-08
发布日期:
2020-12-10
通讯作者:
魏云霞
作者简介:
魏云霞.(0931)7601139, E-mail:weiyx07@lzu.edu.cn基金资助:
MA Mingguang, WEI Yunxia(), LIU Haixia, LIU Fang, SHANG Qiong
Received:
2019-10-12
Online:
2020-06-08
Published:
2020-12-10
Contact:
WEI Yunxia
Supported by:
摘要:
以钛丝表面原位阳极氧化生成的二氧化钛纳米管为基体,通过电聚合苯胺组装得到新型聚苯胺包覆二氧化钛复合纳米管阵列固相微萃取纤维。实验讨论了无机酸介质、苯胺浓度和氧化电压对电聚合苯胺的影响,经过对纤维表面形貌和元素成分的分析,得到最佳的纤维涂层条件:电解液组成为1 mol/L的H2SO4-0.5 mol/L的苯胺,聚合电压10 V,氧化时间60 min。采用所制备的纤维与高效液相色谱联用萃取水样中的紫外线吸收剂并优化萃取条件,固相微萃取条件如下:萃取时间40 min,解吸时间4 min,萃取温度40℃,搅拌速率600 r/min,样品溶液中不加NaCl。同时对环境水样中的目标物分析测定,并做加标试验,目标分析物的平均回收率为78.2%~118%,相对标准偏差为4.4%~8.9%。该方法简便、灵敏、准确,适用于环境水样中紫外线吸收剂的快速测定。
马明广, 魏云霞, 刘海霞, 刘芳, 尚琼. 聚苯胺/二氧化钛纳米管固相微萃取纤维的组装及应用[J]. 色谱, 2020, 38(6): 639-646.
MA Mingguang, WEI Yunxia, LIU Haixia, LIU Fang, SHANG Qiong. Fabrication and application of polyaniline/titanium dioxide nanotube solid phase microextraction fiber[J]. Chinese Journal of Chromatography, 2020, 38(6): 639-646.
图1 钛纤维基体表面的SEM图
Fig. 1 Scanning electron microscope (SEM) images of Ti fiber substrate surface a. untreated Ti wire; b. untreated Ti wire; c. TiO2 NTs/Ti fiber; d. PANI@TiO2NTs/Ti fiber (perchloric acid medium); e. PANI@TiO2NTs/Ti fiber (nitric acid medium); f. PANI@TiO2NTs/Ti fiber (sulfuric acid medium).
图2 不同苯胺浓度下PANI@TiO2NTs涂层的SEM图
Fig. 2 SEM images of PANI@TiO2NTs coatings at various aniline concentrations a. 0.1 mol/L; b. 0.2 mol/L; c. 0.4 mol/L; d. 0.5 mol/L.
图4 不同有机物采用PANI@TiO2NTs/Ti纤维萃取后的色谱图
Fig. 4 Chromatograms of different organics extracted with the PANI@TiO2NTs/Ti fiber a. PAEs; b. PCBs; c. CPs; d. UV filters.PCB-28: 2, 4, 4′-trichlorobiphenyl; PCB-31: 2, 4′, 5-trichlorobiphenyl; PCB-118: 2, 3′, 4, 4′, 5-pentachlorobiphenyl; PCB-153: 2, 2′, 4, 4′, 5, 5′-hexachlorobiphenyl; 2-CP: 2-chlorophenol; 2, 4-DCP: 2, 4-dichlorophenol; TCS: 2-(2, 4-dichlorophenoxy)-5-chlorophenol; BP-3: 2-hydroxy-4-methoxy-benzophenone; OD-PABA: 2-ethylhexyl 4-(N, N-dimethylamino) benzoate; EHMC: 2-ethylhexyl-4-methoxycinnamate; EHS: 2-ethylhexyl salicylate.
UV filter | Linear range/ (μg/L) | R2 | LOD/(μg/L) | LOQ/(μg/L) | RSDs/%* | |
Single fiber (n=5) | Fiber-to-fiber (n=3) | |||||
* Calculated at the mass concentration of 25 μg/L. | ||||||
BP-3 | 0.25-500 | 0.9998 | 0.05 | 0.19 | 4.7 | 7.6 |
OD-PABA | 0.25-500 | 0.9987 | 0.05 | 0.18 | 5.7 | 8.8 |
EHMC | 0.25-500 | 0.9992 | 0.04 | 0.14 | 4.3 | 6.9 |
EHS | 0.25-500 | 0.9953 | 0.06 | 0.22 | 5.3 | 9.3 |
表1 4种紫外线吸收剂的线性范围、相关系数、检出限、定量限和相对标准偏差
Table 1 Linear ranges, correlation coefficients (R2), limits of detection (LODs), limits of quantification (LOQs) and relative standard deviations (RSDs)
UV filter | Linear range/ (μg/L) | R2 | LOD/(μg/L) | LOQ/(μg/L) | RSDs/%* | |
Single fiber (n=5) | Fiber-to-fiber (n=3) | |||||
* Calculated at the mass concentration of 25 μg/L. | ||||||
BP-3 | 0.25-500 | 0.9998 | 0.05 | 0.19 | 4.7 | 7.6 |
OD-PABA | 0.25-500 | 0.9987 | 0.05 | 0.18 | 5.7 | 8.8 |
EHMC | 0.25-500 | 0.9992 | 0.04 | 0.14 | 4.3 | 6.9 |
EHS | 0.25-500 | 0.9953 | 0.06 | 0.22 | 5.3 | 9.3 |
图6 实际污水样品中4种紫外线吸收剂的色谱图
Fig. 6 Chromatograms of the four UV filters in a real wastewater sample a. sample spiked with 5 μg/L UV filters, pretreatment with SPME; b. sample without addition, pretreatment with SPME; c. sample without addition, without SPME.
Sample | Analyte | Background/ (μg/L) | Spiked with 5 μg/L | Spiked with 10 μg/L | |||||
Detected/ (μg/L) | Recovery/ % | RSD/ % | Detected/ (μg/L) | Recovery/ % | RSD/ % | ||||
a ND: not detected or lower than LOD. | |||||||||
River water under Bapanxia Bridge | BP-3 | 0.62 | 5.96 | 106 | 4.4 | 9.34 | 88.0 | 6.7 | |
OD-PABA | 0.84 | 6.82 | 117 | 5.6 | 12.8 | 118 | 7.2 | ||
EHMC | 0.96 | 6.45 | 108 | 4.4 | 9.98 | 91.1 | 5.8 | ||
EHS | NDa | 4.86 | 97.2 | 7.0 | 9.63 | 96.3 | 7.9 | ||
River water under Yintan Bridge | BP-3 | 3.08 | 7.52 | 93.1 | 5.5 | 12.6 | 96.3 | 6.7 | |
OD-PABA | 2.89 | 8.73 | 111 | 6.0 | 13.5 | 105 | 7.3 | ||
EHMC | 1.28 | 6.64 | 106 | 5.1 | 13.0 | 115 | 6.8 | ||
EHS | ND | 5.40 | 108 | 7.9 | 7.82 | 78.2 | 8.5 | ||
River water under Zhongshan Bridge | BP-3 | 1.82 | 6.27 | 91.9 | 5.5 | 10.4 | 88.0 | 6.5 | |
OD-PABA | 2.01 | 6.36 | 90.7 | 5.9 | 11.6 | 96.6 | 7.1 | ||
EHMC | 2.52 | 6.49 | 86.3 | 4.7 | 14.0 | 112 | 5.7 | ||
EHS | ND | 4.51 | 90.2 | 8.3 | 10.8 | 108 | 7.9 | ||
River water under Donggang Bridge | BP-3 | 2.28 | 6.96 | 95.6 | 5.0 | 13.4 | 109 | 5.3 | |
OD-PABA | 2.16 | 8.44 | 118 | 5.2 | 12.0 | 98.7 | 6.3 | ||
EHMC | 2.10 | 6.82 | 96.1 | 4.6 | 13.5 | 112 | 5.9 | ||
EHS | ND | 5.18 | 104 | 7.6 | 11.0 | 102 | 8.5 | ||
River water under Shichuan Bridge | BP-3 | 2.02 | 6.54 | 93.2 | 5.0 | 13.3 | 111 | 6.1 | |
OD-PABA | 2.54 | 6.78 | 89.9 | 5.6 | 14.1 | 112 | 6.8 | ||
EHMC | 1.02 | 6.64 | 110 | 5.0 | 10.6 | 96.2 | 5.9 | ||
EHS | ND | 4.87 | 97.4 | 8.2 | 10.6 | 106 | 8.4 | ||
Wastewater | BP-3 | 2.83 | 6.87 | 87.74 | 5.7 | 13.6 | 106 | 6.6 | |
OD-PABA | 3.52 | 7.23 | 84.86 | 6.1 | 15.2 | 112 | 7.1 | ||
EHMC | 2.17 | 6.52 | 90.93 | 5.0 | 13.5 | 111 | 6.9 | ||
EHS | ND | 4.62 | 92.40 | 7.3 | 9.07 | 90.7 | 8.9 |
表2 不同环境水样中4种紫外线吸收剂的含量、加标回收率和相对标准偏差(n=3)
Table 2 Contents, spiked recoveries and RSDs of four UV filters in different environmental water samples (n=3)
Sample | Analyte | Background/ (μg/L) | Spiked with 5 μg/L | Spiked with 10 μg/L | |||||
Detected/ (μg/L) | Recovery/ % | RSD/ % | Detected/ (μg/L) | Recovery/ % | RSD/ % | ||||
a ND: not detected or lower than LOD. | |||||||||
River water under Bapanxia Bridge | BP-3 | 0.62 | 5.96 | 106 | 4.4 | 9.34 | 88.0 | 6.7 | |
OD-PABA | 0.84 | 6.82 | 117 | 5.6 | 12.8 | 118 | 7.2 | ||
EHMC | 0.96 | 6.45 | 108 | 4.4 | 9.98 | 91.1 | 5.8 | ||
EHS | NDa | 4.86 | 97.2 | 7.0 | 9.63 | 96.3 | 7.9 | ||
River water under Yintan Bridge | BP-3 | 3.08 | 7.52 | 93.1 | 5.5 | 12.6 | 96.3 | 6.7 | |
OD-PABA | 2.89 | 8.73 | 111 | 6.0 | 13.5 | 105 | 7.3 | ||
EHMC | 1.28 | 6.64 | 106 | 5.1 | 13.0 | 115 | 6.8 | ||
EHS | ND | 5.40 | 108 | 7.9 | 7.82 | 78.2 | 8.5 | ||
River water under Zhongshan Bridge | BP-3 | 1.82 | 6.27 | 91.9 | 5.5 | 10.4 | 88.0 | 6.5 | |
OD-PABA | 2.01 | 6.36 | 90.7 | 5.9 | 11.6 | 96.6 | 7.1 | ||
EHMC | 2.52 | 6.49 | 86.3 | 4.7 | 14.0 | 112 | 5.7 | ||
EHS | ND | 4.51 | 90.2 | 8.3 | 10.8 | 108 | 7.9 | ||
River water under Donggang Bridge | BP-3 | 2.28 | 6.96 | 95.6 | 5.0 | 13.4 | 109 | 5.3 | |
OD-PABA | 2.16 | 8.44 | 118 | 5.2 | 12.0 | 98.7 | 6.3 | ||
EHMC | 2.10 | 6.82 | 96.1 | 4.6 | 13.5 | 112 | 5.9 | ||
EHS | ND | 5.18 | 104 | 7.6 | 11.0 | 102 | 8.5 | ||
River water under Shichuan Bridge | BP-3 | 2.02 | 6.54 | 93.2 | 5.0 | 13.3 | 111 | 6.1 | |
OD-PABA | 2.54 | 6.78 | 89.9 | 5.6 | 14.1 | 112 | 6.8 | ||
EHMC | 1.02 | 6.64 | 110 | 5.0 | 10.6 | 96.2 | 5.9 | ||
EHS | ND | 4.87 | 97.4 | 8.2 | 10.6 | 106 | 8.4 | ||
Wastewater | BP-3 | 2.83 | 6.87 | 87.74 | 5.7 | 13.6 | 106 | 6.6 | |
OD-PABA | 3.52 | 7.23 | 84.86 | 6.1 | 15.2 | 112 | 7.1 | ||
EHMC | 2.17 | 6.52 | 90.93 | 5.0 | 13.5 | 111 | 6.9 | ||
EHS | ND | 4.62 | 92.40 | 7.3 | 9.07 | 90.7 | 8.9 |
Method | Extraction time/min | Linear range/(μg/L) | LOD/(μg/L) | RSD/% | Recovery/% | Ref. |
CPE: cloud point extraction; SDME: single drop microextraction; HF-LPME: hollow fiber liquid phase microextraction; DLLME: dispersive liquid-liquid microextraction; MSA-DLLME magnetic stirring assisted dispersive liquid-liquid microextraction. | ||||||
CPE | 30 | 0.5-30 | 0.14-1.27 | 3.9-5.2 | 98.5-102 | [ |
SDME | 37 | 1-300 | 0.06-3.0 | 2.8-7.9 | 92-115 | [ |
HF-LPME | 50 | 5-1000 | 0.2-0.5 | 1.1-8.4 | 95.2-105 | [ |
DLLME | 10 | 0.5-500 | 0.06-0.16 | 2.8-7.6 | 92.8-114 | [ |
MSA-DLLME | 25 | 5-20000 | 0.2-0.8 | 1.4-4.8 | 91.3-97.1 | [ |
SPME | 40 | 0.25-500 | 0.04-0.06 | 4.3-8.9 | 90.6-110 | this method |
表3 本方法与文献报道检测紫外线吸收剂方法的分析比对
Table 3 Comparison of the developed method with other methods for extraction and determination of UV filters
Method | Extraction time/min | Linear range/(μg/L) | LOD/(μg/L) | RSD/% | Recovery/% | Ref. |
CPE: cloud point extraction; SDME: single drop microextraction; HF-LPME: hollow fiber liquid phase microextraction; DLLME: dispersive liquid-liquid microextraction; MSA-DLLME magnetic stirring assisted dispersive liquid-liquid microextraction. | ||||||
CPE | 30 | 0.5-30 | 0.14-1.27 | 3.9-5.2 | 98.5-102 | [ |
SDME | 37 | 1-300 | 0.06-3.0 | 2.8-7.9 | 92-115 | [ |
HF-LPME | 50 | 5-1000 | 0.2-0.5 | 1.1-8.4 | 95.2-105 | [ |
DLLME | 10 | 0.5-500 | 0.06-0.16 | 2.8-7.6 | 92.8-114 | [ |
MSA-DLLME | 25 | 5-20000 | 0.2-0.8 | 1.4-4.8 | 91.3-97.1 | [ |
SPME | 40 | 0.25-500 | 0.04-0.06 | 4.3-8.9 | 90.6-110 | this method |
|
[1] | 史洪飞, 徐伯芃, 徐成鑫, 周修齐, 许宏福. 溶剂萃取-高效液相色谱-四极杆飞行时间质谱法快速提取检测干燥恰特草中5种生物碱成分[J]. 色谱, 2023, 41(9): 771-780. |
[2] | 赵芮, 黄晴雯, 余智颖, 韩铮, 范楷, 赵志辉, 聂冬霞. QuEChERS-超高效液相色谱-串联质谱法同时测定水果中36种真菌毒素[J]. 色谱, 2023, 41(9): 760-770. |
[3] | 刘宇, 邢家溧, 沈坚, 毕晓丽, 毛玲燕, 徐晓蓉, 张书芬, 娄永江, 吴希, 穆应花. 高效液相色谱-蒸发光散射检测法同时测定固态食品中6种稀有糖[J]. 色谱, 2023, 41(9): 781-788. |
[4] | 岳超, 赵超群, 毛思浩, 王展华, 施贝, 徐欣丰, 梁晶晶. 通过式固相萃取净化-超高效液相色谱-串联质谱法测定液体乳中10种氨基甲酸酯类农药残留[J]. 色谱, 2023, 41(9): 807-813. |
[5] | 杜洁, 孙鹏超, 张梦露, 连泽特, 原凤刚, 王刚. 多孔氮化硼掺杂聚吡咯-2,3,3-三甲基吲哚固相微萃取涂层的制备及多环芳烃的检测[J]. 色谱, 2023, 41(9): 789-798. |
[6] | 曹沁玲, 赵小丹, 沈国滨, 汪竹琴, 章弘扬, 张敏, 胡坪. 基于超高效液相色谱-电雾式检测的槐糖脂指纹图谱[J]. 色谱, 2023, 41(8): 722-729. |
[7] | 钱正明, 吴梦奇, 谭国英, 金李玲, 李宁, 谢菊英. 高效液相色谱紫外等吸收波长法快速测定秦皮中秦皮甲素和秦皮乙素[J]. 色谱, 2023, 41(8): 690-697. |
[8] | 吴萍萍, 林仁义, 黄丽英. 三相中空纤维液相微萃取-高效液相色谱法测定铁皮石斛和金线莲中3种植物生长调节剂[J]. 色谱, 2023, 41(8): 683-689. |
[9] | 马超, 倪洪星, 戚羽霖. 超高效液相色谱-傅里叶变换离子回旋共振质谱法解析溶解性有机质的化学多样性[J]. 色谱, 2023, 41(8): 662-672. |
[10] | 孟二琼, 念琪循, 李峰, 张秋萍, 许茜, 王春民. 磺酸化磁性氮化碳固相萃取-超高液相色谱-串联质谱筛检淡水鱼中孔雀石绿和隐色孔雀石绿[J]. 色谱, 2023, 41(8): 673-682. |
[11] | 陈东洋, 张昊, 张磊, 王一红, 王小丹, 冯家力, 梁静, 钟旋. 固相萃取-超高效液相色谱-串联质谱法测定发酵食品中的曲酸[J]. 色谱, 2023, 41(7): 632-639. |
[12] | 王秋旭, 冯启言, 朱雪强. 加速溶剂萃取-固相萃取净化结合超高效液相色谱-串联质谱法测定沉积物中双酚类化合物[J]. 色谱, 2023, 41(7): 582-590. |
[13] | 杨哲, 吕建霞, 吴一荻, 蒋力维, 李冬梅. 超高效液相色谱法同时测定电子烟油中的5种吲哚/吲唑酰胺类合成大麻素[J]. 色谱, 2023, 41(7): 602-609. |
[14] | 夏宝林, 汪仕韬, 殷晶晶, 张维益, 杨娜, 刘强, 吴海晶. 自动上样固相萃取-超高效液相色谱-串联质谱法同时测定水中9类43种抗菌药物残留[J]. 色谱, 2023, 41(7): 591-601. |
[15] | 童学智, 陈东洋, 冯家力, 范翔, 张昊, 杨胜园. QuEChERS-超高效液相色谱-串联质谱法快速测定水产品中5种卤代苯醌[J]. 色谱, 2023, 41(6): 490-496. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||