色谱 ›› 2020, Vol. 38 ›› Issue (9): 1046-1056.DOI: 10.3724/SP.J.1123.2020.03018

• 专论与综述 • 上一篇    下一篇

分子印迹聚合物在毛细管电色谱拆分手性药物中的研究进展

李振群, 贾丽()   

  1. 华南师范大学生物光子学研究院, 激光生命科学教育部重点实验室, 广东省激光生命科学重点实验室, 广东 广州 510631
  • 收稿日期:2020-03-18 出版日期:2020-09-08 发布日期:2020-12-11
  • 通讯作者: 贾丽
  • 作者简介:贾丽.Tel:(020)85217070, E-mail:jiali@scnu.edu.cn
  • 基金资助:
    国家自然科学基金(21675056)

Research progress of molecularly imprinted polymers in separation of chiral drugs by capillary electrochromatography

LI Zhenqun, JIA Li()   

  1. Ministry of Education Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
  • Received:2020-03-18 Online:2020-09-08 Published:2020-12-11
  • Contact: JIA Li
  • Supported by:
    National Natural Science Foundation of China(21675056)

摘要:

手性药物通过与生物体内生物大分子之间的手性匹配与分子识别来发挥药理作用。两个对映体与体内手性环境相互作用的不同导致每个对映体表现出不同的药理活性、代谢过程、代谢速率及毒性等药代动力学特征。因此发展手性药物的拆分方法,对于手性药物的开发和生产过程的质量监控具有重要意义。分子印迹聚合物(MIPs)是以目标分子作为模板而制备的高分子聚合物,它具有特定的空间分子结构和官能团,对目标分子具有高度的特异性识别能力。基于该特点,MIPs非常适合于手性药物的拆分和纯化。毛细管电色谱(CEC)可同时基于毛细管电泳和液相色谱的分离机理对目标物进行分离,因此具有高分离效率和高选择性的特点。将MIPs材料作为CEC的固定相,可将这两种技术的优势结合,从而实现对手性药物的高效拆分。MIPs材料在1994年首次应用于CEC手性拆分,此后该研究领域开始获得关注和发展。MIPs材料主要通过4种模式在CEC中实现手性拆分,分别是作为开管柱、填充柱和整体柱的固定相以及分离介质中的准固定相。该综述以这4种模式作为分类基准,根据MIPs制备所需的材料和分离对象对其在CEC手性拆分中的应用进行了总结,揭示了MIPs在CEC手性拆分中的潜力,同时评述了这4种模式各自的优势与不足,并对将来MIPs在CEC手性拆分中的发展进行了展望。

关键词: 毛细管电色谱, 手性拆分, 分子印迹聚合物, 综述

Abstract:

Chiral drugs exert pharmacological effects through strict matching with chiral biological macromolecules and chiral recognition. Each enantiomer has different pharmacological activities, metabolic processes and rates, as well as toxicity pharmacokinetic characteristics owing to the difference in its interactions with the chiral environment. Therefore, method development for the resolution of chiral drugs is of great significance for the synthesis of chiral drugs and for quality control during the production process. Molecularly imprinted polymers (MIPs) are prepared by using a target molecule as the template. MIPs demonstrate highly specific recognition properties toward the target molecule since they have specific spatial molecular structures and functional groups. Hence, MIPs are particularly suitable for the separation and purification of chiral drugs. Capillary electrochromatography (CEC) offers the advantages of high separation efficiency and high selectivity owing to the dual separation mechanisms including capillary electrophoresis and liquid chromatography. By using MIPs as the stationary phases for CEC, the advantages of the two technologies can be combined to achieve efficient separation of chiral drugs. MIPs were first applied to CEC for chiral resolution in 1994, and since then, there have been notable advances in this field. The four main chiral separation modes in CEC involve the use of MIPs as the stationary phases of open tubular, packed, and monolithic columns, and as the pseudostationary phase in the separation medium.

This review summarizes the research progress of these four methods and reveals the potential of MIPs in chiral resolution by CEC. The advantages and disadvantages of these methods are commented. MIPs as the stationary phases of packed columns can allow for chiral separation. However, the preparation of packed columns in narrow capillaries is difficult. In addition, frits must be prepared at the ends of the capillaries to seal the MIPs. The frits lead to the formation of bubbles during the CEC analysis, thus resulting in poor repeatability and stability. These problems can be overcome by using MIP-based open tubular columns. Furthermore, conditioning of open tubular columns is easy and less time-consuming. However, open tubular columns have limited capacity. MIP-based monolithic columns have greater capacity than do open tubular columns, and frits are not required in this case. However, in situ preparation of MIPs monolith in narrow capillaries is still challenging. The application of MIPs to chiral CEC can also be realized by using them as pseudostationary phases (additives) in the separation medium, and this allows for ease of operation. Moreover, the amount of MIPs introduced into the capillary can be accurately controlled. Thus, the batch-to-batch reproducibility can be improved, but this has the disadvantage of increased MIP consumption.

In order to further expand the potential of MIPs in chiral CEC, the following aspects must be considered. First, improvement of the preparation method. In most reported MIP-based-chiral CEC techniques, the peaks of the imprinted molecules show severe tailing, and this problem must be resolved. Improving the mass transfer rate of the prepared MIPs may be a suitable solution in this regard. Second, development of new functional monomers. A functional monomer is an indispensable component in the preparation of MIPs. New functional monomers can be prepared according to the "three-point interaction" rule. Third, selection of template molecules. A single enantiomer of chiral drugs is used as the template molecule to prepare chiral MIPs. The method is not suitable for the preparation of MIPs of chiral drugs for which a single enantiomer is difficult to obtain. Therefore, appropriate choice of the template molecules for these drugs is imperative. Fourth, discussion of chiral separation mechanism. The mechanism of interaction between the template molecules and MIPs needs to be explored further, in order to obtain theoretical guidance for the design and preparation of chiral MIPs.

Key words: capillary electrochromatography (CEC), chiral separation, molecularly imprinted polymers (MIPs), review