色谱 ›› 2020, Vol. 38 ›› Issue (9): 1046-1056.DOI: 10.3724/SP.J.1123.2020.03018
收稿日期:
2020-03-18
出版日期:
2020-09-08
发布日期:
2020-12-11
通讯作者:
贾丽
作者简介:
贾丽.Tel:(020)85217070, E-mail:jiali@scnu.edu.cn基金资助:
Received:
2020-03-18
Online:
2020-09-08
Published:
2020-12-11
Contact:
JIA Li
Supported by:
摘要:
手性药物通过与生物体内生物大分子之间的手性匹配与分子识别来发挥药理作用。两个对映体与体内手性环境相互作用的不同导致每个对映体表现出不同的药理活性、代谢过程、代谢速率及毒性等药代动力学特征。因此发展手性药物的拆分方法,对于手性药物的开发和生产过程的质量监控具有重要意义。分子印迹聚合物(MIPs)是以目标分子作为模板而制备的高分子聚合物,它具有特定的空间分子结构和官能团,对目标分子具有高度的特异性识别能力。基于该特点,MIPs非常适合于手性药物的拆分和纯化。毛细管电色谱(CEC)可同时基于毛细管电泳和液相色谱的分离机理对目标物进行分离,因此具有高分离效率和高选择性的特点。将MIPs材料作为CEC的固定相,可将这两种技术的优势结合,从而实现对手性药物的高效拆分。MIPs材料在1994年首次应用于CEC手性拆分,此后该研究领域开始获得关注和发展。MIPs材料主要通过4种模式在CEC中实现手性拆分,分别是作为开管柱、填充柱和整体柱的固定相以及分离介质中的准固定相。该综述以这4种模式作为分类基准,根据MIPs制备所需的材料和分离对象对其在CEC手性拆分中的应用进行了总结,揭示了MIPs在CEC手性拆分中的潜力,同时评述了这4种模式各自的优势与不足,并对将来MIPs在CEC手性拆分中的发展进行了展望。
李振群, 贾丽. 分子印迹聚合物在毛细管电色谱拆分手性药物中的研究进展[J]. 色谱, 2020, 38(9): 1046-1056.
LI Zhenqun, JIA Li. Research progress of molecularly imprinted polymers in separation of chiral drugs by capillary electrochromatography[J]. Chinese Journal of Chromatography, 2020, 38(9): 1046-1056.
Print molecule | Monomer | Crosslinker | Initiator | Analyte | Rs | Ref. |
Rs: resolution; MAA: methacrylic acid; 2-VP: 2-vinylpyridine; EDMA: ethylene glycol dimethacrylate; AIBN: 2, 2′-azo-bis-isobutyronitrile. | ||||||
L-Phenylalanine | MAA | EDMA | AIBN | D/L-phenylalanine | 1.35 | [ |
D/L-tyrosine | 0.75 | |||||
D/L-phenylglycine | 0.98 | |||||
D/L-Dopa | 0.68 | |||||
L-Tryptophan | MAA | EDMA | AIBN | D/L-tryptophan | 0.94 | [ |
Dansyl-L-leucine | MAA | EDMA | AIBN | dansyl-D/L-leucine | 1.04 | [ |
Dansyl-L-leucine | MAA, 2-VP | EDMA | AIBN | dansyl-D/L-leucine | 1.20 | [ |
dansyl-D/L-phenylalanine | 0.56 | |||||
dansyl-D/L-glycine | 1.04 | |||||
dansyl-D/L-isoleucine | 0.98 | |||||
L-Phenylalanine anilide | MAA | EDMA | AIBN | D/L-phenylalanine anilide | 1.68 | [ |
表1 MIPs作为毛细管填充柱的固定相在CEC手性拆分中的应用
Table 1 Application of molecularly imprinted polymers (MIPs) as stationary phases in packed capillary columns for chiral resolution by CEC
Print molecule | Monomer | Crosslinker | Initiator | Analyte | Rs | Ref. |
Rs: resolution; MAA: methacrylic acid; 2-VP: 2-vinylpyridine; EDMA: ethylene glycol dimethacrylate; AIBN: 2, 2′-azo-bis-isobutyronitrile. | ||||||
L-Phenylalanine | MAA | EDMA | AIBN | D/L-phenylalanine | 1.35 | [ |
D/L-tyrosine | 0.75 | |||||
D/L-phenylglycine | 0.98 | |||||
D/L-Dopa | 0.68 | |||||
L-Tryptophan | MAA | EDMA | AIBN | D/L-tryptophan | 0.94 | [ |
Dansyl-L-leucine | MAA | EDMA | AIBN | dansyl-D/L-leucine | 1.04 | [ |
Dansyl-L-leucine | MAA, 2-VP | EDMA | AIBN | dansyl-D/L-leucine | 1.20 | [ |
dansyl-D/L-phenylalanine | 0.56 | |||||
dansyl-D/L-glycine | 1.04 | |||||
dansyl-D/L-isoleucine | 0.98 | |||||
L-Phenylalanine anilide | MAA | EDMA | AIBN | D/L-phenylalanine anilide | 1.68 | [ |
Print molecule | Monomer | Crosslinker | Initiator | Analyte | Rs | Ref. |
4-SSA: 4-styrenesulfonic acid; MAM: 2-methacrylamidopropylmethacrylate; POSS: polyhedral oligomeric silsesquioxanes; DVB: divinylbenzene; γ-MPS: 3-(trimethoxysilyl)propyl methacrylate; -: no data. | ||||||
S-2-Phenylpropionic acid | trans-3-(3-pyridyl)-acrylic acid | DVB | azo-bis-cyclohexanecarbonitrile | R/S-2-phenylpropionic acid | - | [ |
S-Ketoprofen | MAA, 4-SSA | EDMA | AIBN | R/S-ketoprofen | 10.5 | [ |
S-Ofloxacin | MAA, 4-SSA | EDMA | AIBN | R/S-ofloxacin | 4.4 | [ |
S-Ibuprofen | MAA, 4-SSA | EDMA | AIBN | R/S-ibuprofen | 9.0 | [ |
S-Fenoprofen | MAA, 4-SSA | EDMA | AIBN | R/S-fenoprofen | 8.4 | [ |
S-Naproxen | MAA, 4-SSA | EDMA | AIBN | R/S-naproxen | 6.3 | [ |
S-Flurbiprofen | MAA, 4-SSA | EDMA | AIBN | R/S-flurbiprofen | 2.0 | [ |
S-3-(Benzyloxycarbonyl)-4-oxazolidine carboxylic acid | MAA, 4-SSA | EDMA | AIBN | R/S-3-(benzyloxycarbonyl)-4-oxazolidine carboxylic acid | 6.0 | [ |
S-Mandelic acid | MAA, 4-SSA | EDMA | AIBN | R/S-mandelic acid | 2.6 | [ |
S-N-(1-Phenyethyl)phthalamic acid | MAA, 4-SSA | EDMA | AIBN | R/S-N-(1-phenyethyl) phthalamic acid | 3.2 | [ |
S-O-Acetylmandelic acid | MAA, 4-SSA | EDMA | AIBN | R/S-O-acetylmandelic acid | 6.0 | [ |
S-Phenylsuccinic acid | MAA, 4-SSA | EDMA | AIBN | R/S-phenylsuccinic acid | 0.9 | [ |
S-2-Phenylpropionic acid | MAA, 4-SSA | EDMA | AIBN | R/S-2-phenylpropionic acid | 0.8 | [ |
R-Atenolol | MAA, 4-SSA | EDMA | AIBN | R/S-atenolol | 3.6 | [ |
S-Sulpiride | MAA, 4-SSA | EDMA | AIBN | R/S-sulpiride | 3.0 | [ |
S-(1-Naphthyl)-ethylamine | MAA, 4-SSA | EDMA | AIBN | R/S-(1-naphthyl)-ethylamine | 1.2 | [ |
4S, 5R-4-Methyl-5-phenyl-2-oxazolidinone | MAA, 4-SSA | EDMA | AIBN | 4S, 5R/4R, 5S-4-methyl-5-phenyl-2-oxazolidinone | 5.0 | [ |
S-Naproxen | MAM | MAM | AIBN | R/S-naproxen | 2.2 | [ |
S-Amlodipine | MAM | MAM | AIBN | R/S-amlodipine | 16.1 | [ |
S-Ketoprofen | MAM | MAM | AIBN | R/S-ketoprofen | 4.6 | [ |
S-Amlodipine | 4-methylphenyl dicyclohexyl propylene, MAA | EDMA | AIBN | R/S-amlodipine | 10.4 | [ |
S-Naproxen | 4-methylphenyl dicyclohexyl propylene, MAA | EDMA | AIBN | R/S-naproxen | 1.41 | [ |
S-Ofloxacin | 4-methylphenyl dicyclohexyl propylene, MAA | EDMA | AIBN | R/S-ofloxacin | 1.55 | [ |
S-Amlodipine | methacryllsobutyl POSS, MAA | MAM | AIBN | R/S-amlodipine | 14.8 | [ |
D-Zopiclone | methacryllsobutyl POSS, MAA | MAM | AIBN | D/L-zopiclone | 2.49 | [ |
S-Naproxen | methacryllsobutyl POSS, MAA | MAM | AIBN | R/S-naproxen | 2.68 | [ |
S-Amlodipine | octavinyl-POSS, MAA | - | AIBN | R/S-amlodipine | 14.3 | [ |
S-Propranolol | MAA | γ-MPS | AIBN | R/S-propranolol | - | [ |
Z-L-Asp-OH | MAA, 4-VP | EDMA | AIBN | Z-D/L-Asp-OH | 0 | [ |
L-Tryptophan | dopamine | - | - | D/L-tryptophan | 1.65 | [ |
L-Tyrosine | dopamine | - | - | D/L-tyrosine | 1.76 | [ |
Gly-L-Phe | dopamine | - | - | Gly-D/L-Phe | 3.15 | [ |
S-Ofloxacin | dopamine | - | - | R/S-ofloxacin | 2.16 | [ |
R-Mandelic acid | norepinephrine | - | - | R/S-mandelic acid | 1.82 | [ |
L-Histidine | norepinephrine | D/L-histidine | 1.63 | [ |
表2 MIPs作为开管柱的固定相在CEC手性拆分中的应用
Table 2 Application of MIPs as stationary phases in open-tubular columns for chiral resolution by CEC
Print molecule | Monomer | Crosslinker | Initiator | Analyte | Rs | Ref. |
4-SSA: 4-styrenesulfonic acid; MAM: 2-methacrylamidopropylmethacrylate; POSS: polyhedral oligomeric silsesquioxanes; DVB: divinylbenzene; γ-MPS: 3-(trimethoxysilyl)propyl methacrylate; -: no data. | ||||||
S-2-Phenylpropionic acid | trans-3-(3-pyridyl)-acrylic acid | DVB | azo-bis-cyclohexanecarbonitrile | R/S-2-phenylpropionic acid | - | [ |
S-Ketoprofen | MAA, 4-SSA | EDMA | AIBN | R/S-ketoprofen | 10.5 | [ |
S-Ofloxacin | MAA, 4-SSA | EDMA | AIBN | R/S-ofloxacin | 4.4 | [ |
S-Ibuprofen | MAA, 4-SSA | EDMA | AIBN | R/S-ibuprofen | 9.0 | [ |
S-Fenoprofen | MAA, 4-SSA | EDMA | AIBN | R/S-fenoprofen | 8.4 | [ |
S-Naproxen | MAA, 4-SSA | EDMA | AIBN | R/S-naproxen | 6.3 | [ |
S-Flurbiprofen | MAA, 4-SSA | EDMA | AIBN | R/S-flurbiprofen | 2.0 | [ |
S-3-(Benzyloxycarbonyl)-4-oxazolidine carboxylic acid | MAA, 4-SSA | EDMA | AIBN | R/S-3-(benzyloxycarbonyl)-4-oxazolidine carboxylic acid | 6.0 | [ |
S-Mandelic acid | MAA, 4-SSA | EDMA | AIBN | R/S-mandelic acid | 2.6 | [ |
S-N-(1-Phenyethyl)phthalamic acid | MAA, 4-SSA | EDMA | AIBN | R/S-N-(1-phenyethyl) phthalamic acid | 3.2 | [ |
S-O-Acetylmandelic acid | MAA, 4-SSA | EDMA | AIBN | R/S-O-acetylmandelic acid | 6.0 | [ |
S-Phenylsuccinic acid | MAA, 4-SSA | EDMA | AIBN | R/S-phenylsuccinic acid | 0.9 | [ |
S-2-Phenylpropionic acid | MAA, 4-SSA | EDMA | AIBN | R/S-2-phenylpropionic acid | 0.8 | [ |
R-Atenolol | MAA, 4-SSA | EDMA | AIBN | R/S-atenolol | 3.6 | [ |
S-Sulpiride | MAA, 4-SSA | EDMA | AIBN | R/S-sulpiride | 3.0 | [ |
S-(1-Naphthyl)-ethylamine | MAA, 4-SSA | EDMA | AIBN | R/S-(1-naphthyl)-ethylamine | 1.2 | [ |
4S, 5R-4-Methyl-5-phenyl-2-oxazolidinone | MAA, 4-SSA | EDMA | AIBN | 4S, 5R/4R, 5S-4-methyl-5-phenyl-2-oxazolidinone | 5.0 | [ |
S-Naproxen | MAM | MAM | AIBN | R/S-naproxen | 2.2 | [ |
S-Amlodipine | MAM | MAM | AIBN | R/S-amlodipine | 16.1 | [ |
S-Ketoprofen | MAM | MAM | AIBN | R/S-ketoprofen | 4.6 | [ |
S-Amlodipine | 4-methylphenyl dicyclohexyl propylene, MAA | EDMA | AIBN | R/S-amlodipine | 10.4 | [ |
S-Naproxen | 4-methylphenyl dicyclohexyl propylene, MAA | EDMA | AIBN | R/S-naproxen | 1.41 | [ |
S-Ofloxacin | 4-methylphenyl dicyclohexyl propylene, MAA | EDMA | AIBN | R/S-ofloxacin | 1.55 | [ |
S-Amlodipine | methacryllsobutyl POSS, MAA | MAM | AIBN | R/S-amlodipine | 14.8 | [ |
D-Zopiclone | methacryllsobutyl POSS, MAA | MAM | AIBN | D/L-zopiclone | 2.49 | [ |
S-Naproxen | methacryllsobutyl POSS, MAA | MAM | AIBN | R/S-naproxen | 2.68 | [ |
S-Amlodipine | octavinyl-POSS, MAA | - | AIBN | R/S-amlodipine | 14.3 | [ |
S-Propranolol | MAA | γ-MPS | AIBN | R/S-propranolol | - | [ |
Z-L-Asp-OH | MAA, 4-VP | EDMA | AIBN | Z-D/L-Asp-OH | 0 | [ |
L-Tryptophan | dopamine | - | - | D/L-tryptophan | 1.65 | [ |
L-Tyrosine | dopamine | - | - | D/L-tyrosine | 1.76 | [ |
Gly-L-Phe | dopamine | - | - | Gly-D/L-Phe | 3.15 | [ |
S-Ofloxacin | dopamine | - | - | R/S-ofloxacin | 2.16 | [ |
R-Mandelic acid | norepinephrine | - | - | R/S-mandelic acid | 1.82 | [ |
L-Histidine | norepinephrine | D/L-histidine | 1.63 | [ |
Print molecule | Monomer | Crosslinker | Initiator | Analyte | Rs | Ref. |
TRIM: trimethylolpropane trimethacrylate; L-PheAN: L-phenylalanine anilide; DAMA: 2-(dimethylamino)ethyl methacrylate; TFMAA: trifluoromethyl acrylic acid. | ||||||
S-Propranolol | MAA | TRIM | AIBN | R/S-propranolol | 1.26 | [ |
S-Metoprolol | MAA | TRIM | AIBN | R/S-metoprolol | 1.17 | [ |
S-Ropivacaine | MAA | TRIM | AIBN | R/S-ropivacaine | 1.10 | [ |
R/S-bupivacaine | - | [ | ||||
R/S-mepivacaine | - | [ | ||||
L-PheAN | MAA, 2-VP | EDMA | AIBN | D/L-phenylalanine | 1.22 | [ |
D/L-tyrosine | 0.86 | [ | ||||
D/L-phenylglycine | 0.73 | [ | ||||
D/L-tryptophan | 0 | [ | ||||
D/L-serine | 0 | [ | ||||
R-Binaphthol | MAA | EDMA | AIBN | R/S-binaphthol | 2.20 | [ |
S-Naproxen | MAA | EDMA | AIBN | R/S-naproxen | 1.73 | [ |
S-Ibuprofen | 4-VP | EDMA | AIBN | R/S-ibuprofen | 2.20 | [ |
5S, 11S-Tröger’s base | MAA | EDMA | AIBN | 5R, 11R/5S, 11S-Tröger’s base | 1.56 | [ |
L-Tetrahydropalmatine | MAA | EDMA | AIBN | D/L-tetrahydropalmatine | 1.43 | [ |
R-Binaphthol | DAMA | EDMA | AIBN | R/S-binaphthol | - | [ |
S-Naproxen | MAA | γ-MPS | AIBN | R/S-naproxen | 8.82 | [ |
S-Zolmitriptan | MAA | γ-MPS | AIBN | R/S-zolmitriptan | 4.26 | [ |
S-Zolmitriptan | TFMAA | γ-MPS | AIBN | R/S-zolmitriptan | 0.68 | [ |
S-Zolmitriptan | cinnamic acid | γ-MPS | AIBN | R/S-zolmitriptan | 1.83 | [ |
L-Tyrosine | MAA, 4-VP | EDMA | AIBN | D/L-tyrosine | - | [ |
D/L-tryptophan | - | [ | ||||
D/L-phenylalanine | - | [ | ||||
S-Ornidazole | MAA, 4-VP | EDMA | AIBN | R/S-ornidazole | - | [ |
R/S-secnidazole | - | [ | ||||
RR/SS/RS/SR-Ractopamine | Acrylamide, γ-MPS | - | AIBN | RR/SS/RS/SR-ractopamine | - | [ |
S-Norepinephrine | Itaconic acid | EDMA | AIBN | R/S-norepinephrine | - | [ |
R/S-epinephrine | - | [ | ||||
D-Zopiclone | MAA | EDMA | AIBN | D/L-zopiclone | 2.09 | [ |
表3 MIPs作为整体柱的固定相在CEC手性拆分中的应用
Table 3 Application of MIPs as stationary phases in monolithic columns for chiral resolution by CEC
Print molecule | Monomer | Crosslinker | Initiator | Analyte | Rs | Ref. |
TRIM: trimethylolpropane trimethacrylate; L-PheAN: L-phenylalanine anilide; DAMA: 2-(dimethylamino)ethyl methacrylate; TFMAA: trifluoromethyl acrylic acid. | ||||||
S-Propranolol | MAA | TRIM | AIBN | R/S-propranolol | 1.26 | [ |
S-Metoprolol | MAA | TRIM | AIBN | R/S-metoprolol | 1.17 | [ |
S-Ropivacaine | MAA | TRIM | AIBN | R/S-ropivacaine | 1.10 | [ |
R/S-bupivacaine | - | [ | ||||
R/S-mepivacaine | - | [ | ||||
L-PheAN | MAA, 2-VP | EDMA | AIBN | D/L-phenylalanine | 1.22 | [ |
D/L-tyrosine | 0.86 | [ | ||||
D/L-phenylglycine | 0.73 | [ | ||||
D/L-tryptophan | 0 | [ | ||||
D/L-serine | 0 | [ | ||||
R-Binaphthol | MAA | EDMA | AIBN | R/S-binaphthol | 2.20 | [ |
S-Naproxen | MAA | EDMA | AIBN | R/S-naproxen | 1.73 | [ |
S-Ibuprofen | 4-VP | EDMA | AIBN | R/S-ibuprofen | 2.20 | [ |
5S, 11S-Tröger’s base | MAA | EDMA | AIBN | 5R, 11R/5S, 11S-Tröger’s base | 1.56 | [ |
L-Tetrahydropalmatine | MAA | EDMA | AIBN | D/L-tetrahydropalmatine | 1.43 | [ |
R-Binaphthol | DAMA | EDMA | AIBN | R/S-binaphthol | - | [ |
S-Naproxen | MAA | γ-MPS | AIBN | R/S-naproxen | 8.82 | [ |
S-Zolmitriptan | MAA | γ-MPS | AIBN | R/S-zolmitriptan | 4.26 | [ |
S-Zolmitriptan | TFMAA | γ-MPS | AIBN | R/S-zolmitriptan | 0.68 | [ |
S-Zolmitriptan | cinnamic acid | γ-MPS | AIBN | R/S-zolmitriptan | 1.83 | [ |
L-Tyrosine | MAA, 4-VP | EDMA | AIBN | D/L-tyrosine | - | [ |
D/L-tryptophan | - | [ | ||||
D/L-phenylalanine | - | [ | ||||
S-Ornidazole | MAA, 4-VP | EDMA | AIBN | R/S-ornidazole | - | [ |
R/S-secnidazole | - | [ | ||||
RR/SS/RS/SR-Ractopamine | Acrylamide, γ-MPS | - | AIBN | RR/SS/RS/SR-ractopamine | - | [ |
S-Norepinephrine | Itaconic acid | EDMA | AIBN | R/S-norepinephrine | - | [ |
R/S-epinephrine | - | [ | ||||
D-Zopiclone | MAA | EDMA | AIBN | D/L-zopiclone | 2.09 | [ |
Print molecule | Monomer | Crosslinker | Initiator | Analyte | Rs | Ref. |
BMA: butyl methacrylate; MPDE: 4-methyl phenyl dicyclohexyl ethylene; MBAA: N, N′-methylenebiacrylamide; APS: ammonium persulfate. | ||||||
S-Propranolol | N-acryloyl-alanine | EDMA | AIBN | R/S-propranolol | 1.48 | [ |
S-Propranolol | MAA | TRIM | AIBN | R/S-propranolol | - | [ |
S-Ofloxacin | MAA, BMA | EDMA | AIBN | R/S-ofloxacin | 1.53 | [ |
D-Zopiclone | MAA, MPDE | EDMA | AIBN | D/L-zopiclone | 3.29 | [ |
L-Tryptophan | acrylamide | MBAA | APS | D/L-tryptophan | 2.73 | [ |
表4 MIPs作为准固定相在CEC手性拆分中的应用
Table 4 Application of MIPs as pseudo stationary phases for chiral resolution by CEC
Print molecule | Monomer | Crosslinker | Initiator | Analyte | Rs | Ref. |
BMA: butyl methacrylate; MPDE: 4-methyl phenyl dicyclohexyl ethylene; MBAA: N, N′-methylenebiacrylamide; APS: ammonium persulfate. | ||||||
S-Propranolol | N-acryloyl-alanine | EDMA | AIBN | R/S-propranolol | 1.48 | [ |
S-Propranolol | MAA | TRIM | AIBN | R/S-propranolol | - | [ |
S-Ofloxacin | MAA, BMA | EDMA | AIBN | R/S-ofloxacin | 1.53 | [ |
D-Zopiclone | MAA, MPDE | EDMA | AIBN | D/L-zopiclone | 3.29 | [ |
L-Tryptophan | acrylamide | MBAA | APS | D/L-tryptophan | 2.73 | [ |
|
[1] | 周然锋, 张惠贤, 尹小丽, 彭西甜. 新型纳米材料在农产品安全分析中的应用进展[J]. 色谱, 2023, 41(9): 731-741. |
[2] | 解伟亚, 朱晓晗, 梅宏成, 郭洪玲, 李亚军, 黄阳, 秦皓, 朱军, 胡灿. 基于功能材料的固相微萃取技术及其在法庭科学领域中的应用[J]. 色谱, 2023, 41(4): 302-311. |
[3] | 欧阳艺兰, 易琳, 邱露允, 张真庆. 色谱技术在肝素结构分析中的研究进展[J]. 色谱, 2023, 41(2): 107-121. |
[4] | 翟洪稳, 马红玉, 曹梅荣, 张明星, 马俊美, 张岩, 李强. 在线样品制备技术耦合液相色谱-质谱系统在食品危害物检测中的应用进展[J]. 色谱, 2023, 41(12): 1062-1072. |
[5] | 余涛, 陈立, 张文敏, 张兰, 卢巧梅. 微孔有机网络材料的合成方法及其在样品前处理中的应用进展[J]. 色谱, 2023, 41(12): 1052-1061. |
[6] | 张振永. 手性毛细管气相色谱法拆分4-氯甲基-2,2-二甲基-1,3-二氧戊环对映异构体[J]. 色谱, 2023, 41(12): 1135-1140. |
[7] | 王国秀, 陈永雷, 吕文娟, 陈宏丽, 陈兴国. 共价有机框架材料在毛细管电色谱中的应用进展[J]. 色谱, 2023, 41(10): 835-842. |
[8] | 郑康妮, 秦该照, 蒋雪菲, 章俊辉, 袁黎明. 多孔有机笼的制备及其用作毛细管电色谱手性固定相[J]. 色谱, 2023, 41(10): 929-936. |
[9] | 闫美婷, 龙文雯, 陶雪平, 王丹, 夏之宁, 付琦峰. 金属有机骨架材料在色谱固定相构建及应用中的研究进展[J]. 色谱, 2023, 41(10): 879-890. |
[10] | 宋春颖, 金高娃, 俞东萍, 夏东海, 丰静, 郭志谋, 梁鑫淼. 超临界流体色谱固定相的发展及在天然产物中的应用[J]. 色谱, 2023, 41(10): 866-878. |
[11] | 蒋文倩, 陈宇媚, 毕文韬. 基于低共熔溶剂的多孔有机框架材料合成及其在固相萃取中的应用[J]. 色谱, 2023, 41(10): 901-910. |
[12] | 杨涵, 汤雯淇, 曾楚, 孟莎莎, 徐铭. 高效金属有机骨架气相色谱固定相的理性设计[J]. 色谱, 2023, 41(10): 853-865. |
[13] | 陈佳, 邱洪灯. 基于碳点的色谱分离材料研究进展[J]. 色谱, 2023, 41(10): 825-834. |
[14] | 玛依热·阿不力提甫, 钟子豪, 白希. 制备气相色谱在挥发性成分分离中的应用研究进展[J]. 色谱, 2023, 41(1): 37-46. |
[15] | 邹晓伟, 刘星, 张建明. 薄层色谱与质谱联用的研究进展[J]. 色谱, 2023, 41(1): 24-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||