色谱 ›› 2020, Vol. 38 ›› Issue (8): 914-922.DOI: 10.3724/SP.J.1123.2019.12009
王小雪1,2, 何祉安1,2, 李欣2, 宋庆浩3, 邹欣薇2,4, 宋雪瑶2,4, 冯蕾1,2,*()
收稿日期:
2019-12-04
出版日期:
2020-08-08
发布日期:
2020-12-11
通讯作者:
冯蕾
作者简介:
冯蕾.E-mail:fiona.fenglei@sjtu.edu.cn基金资助:
WANG Xiaoxue1,2, HE Zhi'an1,2, LI Xin2, SONG Qinghao3, ZOU Xinwei2,4, SONG Xueyao2,4, FENG Lei1,2,*()
Received:
2019-12-04
Online:
2020-08-08
Published:
2020-12-11
Contact:
FENG Lei
Supported by:
摘要:
古菌是一类兼具真菌及细菌细胞特征、大多生活在极端环境下的单细胞微生物。由于膜结构及代谢通路的特殊性,研究古菌脂质对深入探究极端环境下生命的正常活动具有重要意义。前处理方法在组学分析中会极大影响最终结果的准确度及可靠性。该文基于超高效液相色谱-高分辨质谱联用(ultra-performance liquid chromatography-high resolution mass spectrometry,UPLC-HRMS)技术,以嗜热嗜压古菌Pyrococcus yayanosii为模式生物,采用Bligh-Dyer加酸法、Folch法、甲基叔丁基醚(methyl tert-butyl ether,MTBE)法及固相萃取(SPE)法提取脂质成分,从提取效率、重复性、歧视性等角度进行方法评价,并最终确定SPE法和MTBE法的提取重复性和提取效率最好,适合高通量古菌全脂质提取。利用SPE提取、高分辨质谱分析对P.yayanosii的常规脂质进行了全面分析,共鉴定到了1402种脂质。本研究旨在为古菌和其他极端微生物的非靶向脂质组学分析和脂质代谢研究提供方法参考。
王小雪, 何祉安, 李欣, 宋庆浩, 邹欣薇, 宋雪瑶, 冯蕾. 古菌脂质的前处理方法比较及超高效液相色谱-高分辨质谱分析[J]. 色谱, 2020, 38(8): 914-922.
WANG Xiaoxue, HE Zhi'an, LI Xin, SONG Qinghao, ZOU Xinwei, SONG Xueyao, FENG Lei. Comparison of pretreatment methods in lipid analysis and ultra-performance liquid chromatography-mass spectrometry analysis of archaea[J]. Chinese Journal of Chromatography, 2020, 38(8): 914-922.
Extraction | Sample | Extracted lipid | Reference |
GDGT: glycerol dialkyl glycerol tetraethers; MTBE: methyl tert-butyl ether; SPE: solid phase extraction. | |||
Bligh-Dyer method | archaea, bacteria | GDGT | [ |
Folch method | Escherichia coli | Membrane lipid | [ |
MTBE method | microalgae | Fatty acid | [ |
SPE method | bacteria | lipid-linked | [ |
oligosaccharide |
表1 已报道的微生物脂质提取方法
Table 1 Reported lipid extraction methods for microorganisms
Extraction | Sample | Extracted lipid | Reference |
GDGT: glycerol dialkyl glycerol tetraethers; MTBE: methyl tert-butyl ether; SPE: solid phase extraction. | |||
Bligh-Dyer method | archaea, bacteria | GDGT | [ |
Folch method | Escherichia coli | Membrane lipid | [ |
MTBE method | microalgae | Fatty acid | [ |
SPE method | bacteria | lipid-linked | [ |
oligosaccharide |
Parameter | Setting value |
Rt: retention time; ppm: 10-6. | |
Search type | Product QEX |
Precursor tol | 5.0 ppm |
Product tol | 5.0 ppm |
Rt range | ±0.5 min |
Adducts | +H, +NH4, +Na, +2H |
表2 Lipidsearch数据库物质匹配参数设置
Table 2 Parameters for library search by Lipidsearch software
Parameter | Setting value |
Rt: retention time; ppm: 10-6. | |
Search type | Product QEX |
Precursor tol | 5.0 ppm |
Product tol | 5.0 ppm |
Rt range | ±0.5 min |
Adducts | +H, +NH4, +Na, +2H |
Compound name | Formula | Adduct | m/z | Mass error/ppm | Fragments (m/z) |
TG(15:0/14:0/16:0) | C48H92O6 | [M+NH4]+ | 782.7220 | -0.92 | 509.4564, 523.4719, 537.4870 |
[M+Na]+ | 787.6772 | -1.761 | |||
TG(15:0/16:1/17:1) | C51H94O6 | [M+NH4]+ | 820.7387 | -1.136 | 561.4870, 549.4878 |
TG(16:1/14:0/16:1) | C47H88O6 | [M+NH4]+ | 792.70681 | -0.953 | 547.4711, 521.4559 |
[M+Na]+ | -0.877 | ||||
DG(18:0/16:0) | C37H72O5 | [M+Na]+ | 619.5254 | -2.745 | 341.3045, 313.2734 |
DG(18:0/18:0) | C39H76O5 | [M+NH4]+ | 642.6023 | -1.143 | 607.5656, 341.3050 |
表3 部分TG和DG的二级质谱结果
Table 3 Major MS/MS results of triglycerides (TGs) and diglycerides (DGs)
Compound name | Formula | Adduct | m/z | Mass error/ppm | Fragments (m/z) |
TG(15:0/14:0/16:0) | C48H92O6 | [M+NH4]+ | 782.7220 | -0.92 | 509.4564, 523.4719, 537.4870 |
[M+Na]+ | 787.6772 | -1.761 | |||
TG(15:0/16:1/17:1) | C51H94O6 | [M+NH4]+ | 820.7387 | -1.136 | 561.4870, 549.4878 |
TG(16:1/14:0/16:1) | C47H88O6 | [M+NH4]+ | 792.70681 | -0.953 | 547.4711, 521.4559 |
[M+Na]+ | -0.877 | ||||
DG(18:0/16:0) | C37H72O5 | [M+Na]+ | 619.5254 | -2.745 | 341.3045, 313.2734 |
DG(18:0/18:0) | C39H76O5 | [M+NH4]+ | 642.6023 | -1.143 | 607.5656, 341.3050 |
Compound name | Formula | Adduct | m/z | Mass error/ppm | Fragments (m/z) |
SM: sphingomyelin; SPH: sphingosine; HexCer: hexose-ceramide. | |||||
Cer(d16:0/22:0) | C38H77O3N | [M+H]+ | 596.5974 | -0.302 | 578.5863, 256.2632, 340.3568 |
Cer(d18:0/24:0) | C42H85O3N | [M+H]+ | 652.6596 | -0.9 | 634.65, 368.3883, 284.295 |
SM(t18:1/16:0) | C39H79O7N2P | [M+H]+ | 719.5697 | -0.073 | 687.526, 335.2565, 313.2734 |
SPH(t16:0) | C16H35O3N | [M+H]+ | 290.2684 | -1.748 | 272.2578, 242.2475 |
HexCer(d18:1/22:0) | C46H89O8N | [M+H]+ | 784.6650 | -1.363 | 604.6002, 264.2681, 236.2369 |
HexCer(d18:1/23:0) | C53H101O13N | [M+H]+ | 960.7308 | -3.899 | 311.2038, 264.268 |
表4 部分鞘脂类物质二级质谱结果
Table 4 Major MS/MS results of sphingolipids
Compound name | Formula | Adduct | m/z | Mass error/ppm | Fragments (m/z) |
SM: sphingomyelin; SPH: sphingosine; HexCer: hexose-ceramide. | |||||
Cer(d16:0/22:0) | C38H77O3N | [M+H]+ | 596.5974 | -0.302 | 578.5863, 256.2632, 340.3568 |
Cer(d18:0/24:0) | C42H85O3N | [M+H]+ | 652.6596 | -0.9 | 634.65, 368.3883, 284.295 |
SM(t18:1/16:0) | C39H79O7N2P | [M+H]+ | 719.5697 | -0.073 | 687.526, 335.2565, 313.2734 |
SPH(t16:0) | C16H35O3N | [M+H]+ | 290.2684 | -1.748 | 272.2578, 242.2475 |
HexCer(d18:1/22:0) | C46H89O8N | [M+H]+ | 784.6650 | -1.363 | 604.6002, 264.2681, 236.2369 |
HexCer(d18:1/23:0) | C53H101O13N | [M+H]+ | 960.7308 | -3.899 | 311.2038, 264.268 |
Compound name | Formula | Adduct | m/z | Mass error/ppm | Fragments (m/z) |
PE: phosphatidyl ethanolamine; PMe: phosphatidyl methanol; LPC: lysophosphatidylcholine; PG: phosphatidylglycerol. | |||||
PC(16:0/13:0) | C37H74O8NP | [M+H]+ | 692.5277 | 4.520 | 557.4445, 314.2875, 282.2791 |
LPC(16:0) | C24H50O7NP | [M+H]+ | 496.3399 | 0.458 | 184.0733, 104.1069 |
PE(16:0/17:0) | C38H75O8P | [M+H]+ | 691.5288 | 2.265 | 453.2993, 435.2885, 379.2628 |
PMe(16:0/20:3) | C40H73O8P | [M+H]+ | 713.5106 | -1.346 | 475.2817, 457.2708 |
PG(18:1/18:1) | C42H79O10P | [M+NH4]+ | 792.5735 | -1.724 | 603.5333, 283.2629, 311.2941 |
表5 部分磷脂类物质的二级质谱结果
Table 5 Major MS/MS results of glycerophospholipids
Compound name | Formula | Adduct | m/z | Mass error/ppm | Fragments (m/z) |
PE: phosphatidyl ethanolamine; PMe: phosphatidyl methanol; LPC: lysophosphatidylcholine; PG: phosphatidylglycerol. | |||||
PC(16:0/13:0) | C37H74O8NP | [M+H]+ | 692.5277 | 4.520 | 557.4445, 314.2875, 282.2791 |
LPC(16:0) | C24H50O7NP | [M+H]+ | 496.3399 | 0.458 | 184.0733, 104.1069 |
PE(16:0/17:0) | C38H75O8P | [M+H]+ | 691.5288 | 2.265 | 453.2993, 435.2885, 379.2628 |
PMe(16:0/20:3) | C40H73O8P | [M+H]+ | 713.5106 | -1.346 | 475.2817, 457.2708 |
PG(18:1/18:1) | C42H79O10P | [M+NH4]+ | 792.5735 | -1.724 | 603.5333, 283.2629, 311.2941 |
图4 不同提取方法获得的脂类物质的数目
Fig. 4 Numbers of lipids extracted by different methods BD: Bligh-Dyer acidic method.The vertical axis represents the number of identified substances in different peak response intervals. Black color represents the detected response interval above 500000. Dark gray represents the detected response interval from 10000 to 500000. Light gray represents the detected response interval less than 10000.
图5 不同提取方法的提取重复性分析
Fig. 5 The relative standard deviation of lipid metabolites by different pretreatments The vertical axis represents the number of identified substances in different intervals. Black color represents coefficient of variation (CV, n=3) is less than 10% among this group. Light gray color represents CV (n=3) between 10% and 20%. Dark gray color represents CV (n=3) between 20% and 30%. * indicates a significant difference (P < 0.05).
图6 不同提取方法提取(a)脂肪酸、(b)甘油酯、(c)甘油磷脂、(d)鞘脂的热图
Fig. 6 Heatmap of (a) fatty acids, (b) glycerollipids, (c) phosphoglycerollipids, (d) sphingolipids with different extraction methods
图7 P. yayanosii古菌样品中脂质成分的UPLC-HRMS总离子流基峰色谱图
Fig. 7 UPLC-HRMS base peak ion chromatogram of lipid substances extracted from P. yayanosii by SPE UPLC-HRMS: ultra-performance liquid chromatography coupled with high-resolution mass spectrometry.
图8 P. yayanosii脂质物质的组成
Fig. 8 Lipid components of P. yayanosii Percentage equals current type of identified substances divided by the total number of identified substances.
|
[1] | 赵芮, 黄晴雯, 余智颖, 韩铮, 范楷, 赵志辉, 聂冬霞. QuEChERS-超高效液相色谱-串联质谱法同时测定水果中36种真菌毒素[J]. 色谱, 2023, 41(9): 760-770. |
[2] | 岳超, 赵超群, 毛思浩, 王展华, 施贝, 徐欣丰, 梁晶晶. 通过式固相萃取净化-超高效液相色谱-串联质谱法测定液体乳中10种氨基甲酸酯类农药残留[J]. 色谱, 2023, 41(9): 807-813. |
[3] | 史洪飞, 徐伯芃, 徐成鑫, 周修齐, 许宏福. 溶剂萃取-高效液相色谱-四极杆飞行时间质谱法快速提取检测干燥恰特草中5种生物碱成分[J]. 色谱, 2023, 41(9): 771-780. |
[4] | 唐泽坤, 万慧慧, 李红, 陈绍云, 赵金凤, 孙玉明, 蔡蕊, 徐强, 张华. 亲水相互作用色谱-静电场轨道阱高分辨质谱法测定CO2吸收液中9种有机胺类化合物[J]. 色谱, 2023, 41(9): 799-806. |
[5] | 于霜, 高媛, 朱秀华, 耿柠波, 代玉冰, 洪建尧, 陈吉平. 气相色谱-电子捕获负化学源-低分辨质谱法测定人体血液不同组分中短链及中链氯化石蜡[J]. 色谱, 2023, 41(8): 698-706. |
[6] | 马超, 倪洪星, 戚羽霖. 超高效液相色谱-傅里叶变换离子回旋共振质谱法解析溶解性有机质的化学多样性[J]. 色谱, 2023, 41(8): 662-672. |
[7] | 孟二琼, 念琪循, 李峰, 张秋萍, 许茜, 王春民. 磺酸化磁性氮化碳固相萃取-超高液相色谱-串联质谱筛检淡水鱼中孔雀石绿和隐色孔雀石绿[J]. 色谱, 2023, 41(8): 673-682. |
[8] | 王秋旭, 冯启言, 朱雪强. 加速溶剂萃取-固相萃取净化结合超高效液相色谱-串联质谱法测定沉积物中双酚类化合物[J]. 色谱, 2023, 41(7): 582-590. |
[9] | 李洁, 鞠香, 王艳丽, 田其燕, 梁秀清, 李海霞, 刘艳明. QuEChERS-在线凝胶渗透色谱-气相色谱-串联质谱法高通量筛查动物源性食品中的多农药残留[J]. 色谱, 2023, 41(7): 610-621. |
[10] | 夏宝林, 汪仕韬, 殷晶晶, 张维益, 杨娜, 刘强, 吴海晶. 自动上样固相萃取-超高效液相色谱-串联质谱法同时测定水中9类43种抗菌药物残留[J]. 色谱, 2023, 41(7): 591-601. |
[11] | 陈东洋, 张昊, 张磊, 王一红, 王小丹, 冯家力, 梁静, 钟旋. 固相萃取-超高效液相色谱-串联质谱法测定发酵食品中的曲酸[J]. 色谱, 2023, 41(7): 632-639. |
[12] | 王园媛, 李璐璐, 吕佳, 陈永艳, 张岚. 固相萃取-超高效液相色谱-三重四极杆质谱法测定饮用水中13种卤代苯醌类消毒副产物[J]. 色谱, 2023, 41(6): 482-489. |
[13] | 童学智, 陈东洋, 冯家力, 范翔, 张昊, 杨胜园. QuEChERS-超高效液相色谱-串联质谱法快速测定水产品中5种卤代苯醌[J]. 色谱, 2023, 41(6): 490-496. |
[14] | 李鑫玉, 赵芳, 平华, 马智宏, 李冰茹, 马挺军, 李成. 稳定同位素稀释气相色谱-三重四极杆质谱法测定水产品中15种卤代多环芳烃[J]. 色谱, 2023, 41(6): 527-534. |
[15] | 王亚婷, 杨阳, 孙秀兰, 纪剑. 基于气相色谱-质谱法的广泛靶向代谢组学方法开发[J]. 色谱, 2023, 41(6): 520-526. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||