色谱 ›› 2021, Vol. 39 ›› Issue (6): 614-623.DOI: 10.3724/SP.J.1123.2020.11011

• 研究论文 • 上一篇    下一篇

基于通过型固相萃取-超高效液相色谱-高分辨质谱同时测定杨梅中29种农药残留

潘胜东*(), 郭延波, 王立, 张丹丹*()   

  1. 宁波市疾病预防控制中心, 浙江省微量有毒化学物健康风险评估技术研究重点实验室, 浙江 宁波 315010
  • 收稿日期:2020-11-11 出版日期:2021-06-08 发布日期:2021-04-13
  • 通讯作者: 潘胜东,张丹丹
  • 作者简介:Tel:(0574)87271093,E-mail: 317569725@qq.com(张丹丹).
    * Tel:(0574)87274559,E-mail: panshengdong0714@163.com(潘胜东);
  • 基金资助:
    浙江省自然科学基金项目(LQ19B050001);宁波市自然科学基金项目(2018A610404);宁波市自然科学基金项目(2016A610178);宁波市领军和拔尖人才计划

Simultaneous determination of 29 pesticides residues in bayberry by pass-through solid-phase extraction and ultra-performance liquid chromatography-high resolution mass spectrometry

PAN Shengdong*(), GUO Yanbo, WANG Li, ZHANG Dandan*()   

  1. Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province,Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
  • Received:2020-11-11 Online:2021-06-08 Published:2021-04-13
  • Contact: PAN Shengdong,ZHANG Dandan
  • Supported by:
    Zhejiang Provincial Natural Science Foundation(LQ19B050001);Ningbo Municipal Natural Science Foundation(2018A610404);Ningbo Municipal Natural Science Foundation(2016A610178);Ningbo Municipal Program for Leading and Top-Notch Talents

摘要:

建立了基于PRiME HLB通过型固相萃取净化-超高效液相色谱-高分辨质谱法(UPLC-HRMS)快速准确测定杨梅中29种常见农药残留的检测方法。杨梅样品经乙腈涡旋提取、盐析和PRiME HLB固相萃取净化后,以5 mmol/L乙酸铵水溶液和乙腈溶液作为流动相在Waters ACQUITY UPLC HSS T3色谱柱(100 mm×2.1 mm, 1.8 μm)上进行色谱分离,采用正离子电喷雾离子化模式(ESI+)和一级全扫描-数据依赖二级质谱扫描模式(Full mass-ddMS2),基质匹配外标法定量分析。该研究首先优化了液相色谱条件,重点考察了Waters ACQUITY UPLC HSS T3色谱柱和Waters ACQUITY UPLC BEH C18色谱柱对29种农药色谱行为的影响,结果表明Waters ACQUITY UPLC HSS T3色谱柱相比后者具有更强的色谱保留能力;流动相优化结果显示,相比于乙腈-甲酸水溶液体系和乙腈-甲酸-乙酸铵水溶液体系,乙腈-乙酸铵水溶液体系作为流动相时29种农药普遍具有更佳的色谱保留,部分农药的质谱响应有了显著的提高。此外,该研究通过考察3种不同净化方法的基质效应以优化杨梅中29种农药残留检测,实验结果表明,相比于GCB SPE和QuEChERS法两种净化方式,PRiME HLB法对于杨梅提取液具有较好的基质净化能力。在最佳实验条件下,29种农药在1.0~200.0 μg/L范围内呈现良好的线性关系(线性相关系数R2>0.999),方法检出限为2.0 μg/kg;低(6 μg/kg)、中(200 μg/kg)、高(400 μg/kg)3个加标水平下,29种农药的加标回收率为69.2%~135.6%,相对标准偏差为0.7%~14.6%。该方法具有快速、简便、灵敏和准确等优点,适用于理化实验室大批量样品的日常监测。

关键词: 固相萃取, 超高效液相色谱-高分辨质谱, 农药残留, 杨梅, 基质效应

Abstract:

A rapid and accurate analysis method based on PRiME HLB pass-through solid-phase extraction (SPE) and ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) was developed for the determination of 29 pesticide residues in bayberry samples. The bayberry samples were first extracted using acetonitrile by vortexing; then, the extract solution was salted out and purified by PRiME HLB pass-through solid-phase extraction (SPE) cartridges. Chromatographic separation was subsequently carried out on a Waters ACQUITY UPLC HSS T3 column (100 mm×2.1 mm, 1.8 μm) using 5 mmol/L ammonium acetate in water and acetonitrile as the elution solvent. The electrospray ion source in positive (ESI+) mode and full mass-data-dependent MS2 (full mass-ddMS2) mode were used for quantification by the matrix-matched external standard method. The LC conditions were first optimized, and two analytical columns, Waters ACQUITY UPLC HSS T3 and Waters ACQUITY UPLC BEH C18, were investigated for the 29 pesticides. The results indicated that the Waters ACQUITY UPLC HSS T3 column showed better chromatographic retention. Moreover, composites of the mobile phase were also studied. Compared to the acetonitrile-formic acid aqueous solution system and acetonitrile-formic acid-ammonium acetate aqueous solution system, the acetonitrile-ammonium acetate aqueous solution system used as the mobile phase exhibited much better chromatographic behavior for most of the 29 pesticides. In particular, the MS responses of some of the target pesticides were significantly improved when using the ammonium acetate-acetonitrile system as the mobile phase. In addition, the sample pretreatment conditions for the 29 pesticides in bayberry samples were systematically optimized. The matrix effect (ME) for three different types of purification methods were applied to evaluate the purification efficiency for the 29 pesticides in the bayberry samples. The following results were obtained from the post-spiking experiments: (1) For graphitized carbon (GCB) SPE, the post-spiking recoveries of 29 pesticides in the bayberry samples were generally low, less than 60%. (2) For the QuEChERS method, the recoveries of most target pesticides improved. The pesticide ratio with recoveries ranging from 70% to 120% was found to be 41%; however, the pesticide ratio with recoveries of less than 60% was still high (35%). (3) For the PRiME HLB-based pretreatment method, the recoveries of the 29 pesticides obviously improved. The pesticide ratio with recoveries between 70% and 120% was up to 76%, while the pesticide ratios were only 14% and 10% for post-spiking recoveries of 60%-70% and >120%, respectively. Meanwhile, the recoveries of all 29 pesticides were found to be more than 60%. Therefore, the PRiME HLB-based method was better than the GCB SPE and QuEChERS methods for pretreatment of the 29 pesticides in the bayberry samples. In addition, the PRiME HLB-based pretreatment process does not require tedious operation processes such as activation, balance, and elution, and thus, the sample pretreatment time is greatly shortened.
Under the optimal conditions, the 29 target pesticides showed good linearity in the range of 1.0-200.0 μg/L, with correlation coefficients (R2) higher than 0.999. The limits of detection (LODs) were 2.0 μg/kg for the 29 target pesticides. The recoveries of the pesticides spiked in the bayberry samples were in the range of 69.2%-135.6% at 6, 200, and 400 μg/kg, respectively, while the relative standard deviations (RSDs) in the range of 0.7%-14.6%. The proposed method based on PRiME HLB-pass through SPE-UPLC-HRMS was adopted to determine these 29 pesticides in 30 bayberry samples purchased from local and online markets. According to the results, pesticides such as methamidamine, difenoconazole, and tebuconazole were frequently detected in the bayberry samples. However, the maximum residue limits (MRLs) of methamidamine, difenoconazole, and tebuconazole in bayberry samples were not provided in GB 2763-2019. In summary, the developed method is fast, simple, sensitive, and accurate, and it can be applied for daily monitoring of pesticides in bayberry samples.

Key words: solid-phase extraction (SPE), ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS), pesticide residues, bayberry, matrix effect (ME)

中图分类号: