色谱 ›› 2021, Vol. 39 ›› Issue (11): 1213-1221.DOI: 10.3724/SP.J.1123.2021.01029

• 研究论文 • 上一篇    下一篇

QuEChERS-同位素内标-高效液相色谱-串联质谱法测定动物源性食品中植物生长调节剂类农药残留

戴唯*(), 李巧, 朱明, 梁艺馨, 蔡秋, 王缅, 李洁, 刘康书, 王兴宁   

  1. 贵阳海关综合技术中心, 贵州 贵阳 550081
  • 收稿日期:2021-01-19 出版日期:2021-11-08 发布日期:2021-06-02
  • 通讯作者: 戴唯
  • 作者简介:* Tel:(0851)82277101,E-mail: daiwei0915@163.com.
  • 基金资助:
    国家重点研发计划(2017YFC1601603)

Determination of plant growth regulators in animal-derived foods using QuEChERS-isotope-labeled internal standards with high performance liquid chromatography-tandem mass spectrometry

DAI Wei*(), LI Qiao, ZHU Ming, LIANG Yixin, CAI Qiu, WANG Mian, LI Jie, LIU Kangshu, WANG Xingning   

  1. Comprehensive Technology Centre of Guiyang Customs, Guiyang 550081, China
  • Received:2021-01-19 Online:2021-11-08 Published:2021-06-02
  • Contact: DAI Wei
  • Supported by:
    National Key Research and Development Program of China(2017YFC1601603)

摘要:

建立了高效液相色谱-串联质谱法测定动物源性食品中植物生长调节剂类农药残留量的方法。选取猪肉、牛肉、鸡肉、猪肝、鸡蛋和牛奶作为样品,样品经乙腈提取,4 g无水硫酸镁(MgSO4)和1 g氯化钠(NaCl)盐析脱水后,取上清液经50 mg N-丙基乙二胺(PSA)+50 mg十八烷基硅烷(C18)粉末净化(含150 mg MgSO4)。采用Agilent ZORBAX Eclipse Plus C18柱分离待测物,电喷雾电离,正负离子切换多反应检测模式检测,以乙腈和5 mmol/L乙酸铵水溶液作为流动相进行梯度洗脱,基质匹配内标法定量。在猪肝、鸡蛋基质中,矮壮素、噻苯隆和多效唑在0.1~100 μg/L范围内线性关系良好;在猪肉、牛肉和鸡肉中3种植物生长调节剂在0.1~50 μg/L范围内线性关系良好;在牛奶基质中,噻苯隆和多效唑的线性范围为0.05~10 μg/L,矮壮素的线性范围为0.05~5 μg/L,相关系数(r2)均大于0.990。以信噪比(S/N)≥3对应的添加水平作为检出限(LOD), S/N≥10对应的添加水平作为定量限(LOQ),矮壮素、噻苯隆和多效唑在不同基质下的LOD为0.01~0.1 μg/kg, LOQ为0.5~5 μg/kg。分别添加LOQ、2倍LOQ和10倍LOQ 3个水平的目标化合物,平均回收率为70.0%~117.4%, RSD为0.8%~16.1%。该方法操作简单、灵敏度高,采用基质匹配内标法定量,能最大限度地消除基质干扰,使检测结果更加精确,可满足动物源性食品中矮壮素、噻苯隆和多效唑残留的定量检测工作。

关键词: 高效液相色谱-串联质谱, QuEChERS, 植物生长调节剂, 矮壮素, 噻苯隆, 多效唑, 动物源性食品

Abstract:

As among the most widely used pesticides in agriculture, plant growth regulators (PGRs) have a positive influence on plants. However, the overuse of PGRs may induce toxicity in food and even be hazardous to human health. Numerous studies have investigated the presence and residues of PGRs on vegetables and fruits. Animal-derived foods are one of the most dominant food sources providing nutrients to fulfil the daily dietary intake, and could also be potentially contaminated by PGRs. However, there is little information on PGR residues in animal-derived foods. Standardization also lacks among the techniques for PGR determination in animal-derived foods, thereby restricting the further establishment of pesticide usage and food safety regulations. Therefore, in this study, a rapid and effective method for analyzing chlormequat chloride, thidiazuron, and paclobutrazol in animal-derived food samples was established. The method primarily involves high performance liquid chromatography-tandem mass spectrometry combined with the use of isotope-labeled internal standards. The extraction and clean-up procedures were based on the QuEChERS method. The analytes were extracted from pork, beef, chicken, pork liver, egg, and milk samples using acetonitrile, followed by 4 g anhydrous magnesium sulfate (MgSO4), and 1 g sodium chloride (NaCl). The supernatant was removed using a mixture of 50 mg N-propyl ethylenediamine (PSA), 50 mg octadecyl silane (C18), and 150 mg MgSO4, and then passed through a 0.22 μm membrane filter before determination. The Agilent ZORBAX Eclipse Plus C18 column (150 mm×3.0 mm, 1.8 μm) was used to separate the analytes under a gradient elution program, with acetonitrile and 5 mmol/L ammonium acetate solution as mobile phases. The analytes were detected by mass spectrometry using the positive and negative electrospray ionization modes under the multiple reaction monitoring mode. Matrix-matched calibration combined with internal standards was used to quantify the PGRs. The linear regression correlation coefficients (r2) for the PGRs were all greater than 0.990 in the corresponding linear concentration ranges. Chlormequat chloride, thidiazuron, and paclobutrazol showed good linearities in the range of 0.1-100 μg/L for the egg and pork liver samples and 0.1-50 μg/L for the pork, beef, and chicken samples. For the milk samples, thidiazuron and paclobutrazol showed good linearities in the range of 0.05-10 μg/L, while chlormequat chloride showed linearity in the range of 0.05-5 μg/L. The limit of detection (LOD) and limit of quantification (LOQ) for each PGR were based on the signal-to-noise (S/N) ratios. Under optimal conditions, the LODs ranged from 0.01 μg/kg to 0.1 μg/kg, where the LOD was defined as the amount of the tested compound that generated an S/N ratio higher than 3. In addition, the LOQs were in the range of 0.5-5 μg/kg, with an S/N ratio higher than 10. The precision and accuracy were evaluated by recovery experiments. At the LOQ, twice the LOQ, and 10 times the LOQ, the mean recoveries were in the range of 70.0%-117.4%, and the relative standard deviations (RSDs) ranged from 0.8% to 16.1%. The results indicated that the proposed method is accurate and reliable. This method is a modification of the QuEChERS method, and is advantageous owing to its simplicity and high sensitivity. The use of matrix-matching calibration curves and internal standards can eliminate matrix interference, thereby increasing the accuracy of the method. This method satisfies the testing requirements for chlormequat chloride, thidiazuron, and paclobutrazol residues in animal-derived foods, and is promising for the determination of other PGRs or other types of pesticides in animal-derived foods.

Key words: high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), QuEChERS, plant growth regulators, chlormequat chloride, thidiazuron, paclobutrazol, animal derived foods

中图分类号: