色谱 ›› 2021, Vol. 39 ›› Issue (11): 1171-1181.DOI: 10.3724/SP.J.1123.2021.01017

• 研究论文 • 上一篇    下一篇

液晶分子印迹整体柱的制备及其分子识别热力学

魏琴, 陈秀秀, 白丽红, 赵亮, 黄艳萍*(), 刘照胜*()   

  1. 天津医科大学药学院, 天津市临床药物关键技术重点实验室, 天津 300070
  • 收稿日期:2021-01-12 出版日期:2021-11-08 发布日期:2021-06-18
  • 通讯作者: 黄艳萍,刘照胜
  • 作者简介:E-mail: huangyp100@163.com (黄艳萍).
    * E-mail: zhaoshengliu@sohu.com (刘照胜);
  • 基金资助:
    国家自然科学基金(21775109)

Preparation of liquid crystal-based molecularly imprinted monolith and its molecular recognition thermodynamics

WEI Qin, CHEN Xiuxiu, BAI Lihong, ZHAO Liang, HUANG Yanping*(), LIU Zhaosheng*()   

  1. Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
  • Received:2021-01-12 Online:2021-11-08 Published:2021-06-18
  • Contact: HUANG Yanping,LIU Zhaosheng
  • Supported by:
    National Natural Science Foundation of China(21775109)

摘要:

液晶分子印迹聚合物(MIPs)因刚性液晶单体的加入而在超低交联度水平下也能印迹和识别模板分子,有效解决了传统MIPs因高交联度造成的位点包埋、结合容量低、传质慢等问题。尽管液晶MIPs具有如此独特的优势,但却面临着由于交联度的大幅度降低而导致印迹效果下降的问题。为了研究液晶MIPs的结合特性,制备具有良好印迹效果的低交联液晶MIPs,该文通过二次接枝聚合,制备了一系列不同交联度的液晶分子印迹整体柱,用高效液相色谱法研究了聚合参数与印迹整体柱亲和性的关系。实验中选用三羟甲基丙烷三甲基丙烯酸酯(TRIM)为交联剂,以甲苯和十二醇为致孔剂合成整体柱骨架,并在此基础上以(S)-萘普生为模板,加入液晶单体4-氰基苯基单环己基乙烯(CPCE)进行二次聚合接枝。实验中系统考察了流动相中乙腈比例及缓冲液pH值对色谱保留的影响,结果发现液晶单体的加入使得MIPs对萘普生保留控制机制由原来的氢键作用变为了疏水作用;通过动态吸附实验得到的突破曲线经前沿分析及对吸附等温线Langmuir、Freundlich和Scatchard分析拟合,发现交联度为15%时液晶MIPs印迹因子最大(3.78)、非均一性最强,且特异性吸附量高于非特异性吸附量。液晶MIPs的计量置换模型(SDM-R)分析表明,液晶印迹整体柱对模板分子的总亲和力(ln A=0.645)明显高于其类似物;而从空间匹配程度看,与液晶印迹整体柱空间匹配程度最高的是酮洛芬而非模板分子,但液晶印迹整体柱对酮洛芬的总亲和力(ln A=0.242)不及模板分子的一半,表明在本低交联液晶印迹系统中,空间效应不是决定印迹系统识别能力的主要因素。进一步的分离热力学研究发现,低交联液晶印迹柱的|ΔΔH|<T|ΔΔS|,而交联度为70%的非液晶MIPs柱的|ΔΔH|>T|ΔΔS|,表明液晶MIPs的分离过程是一个熵控制过程,而常规无液晶MIPs的分离过程是一个焓控制过程。上述结果表明,液晶单体的加入改变了MIPs的识别机制,适当的低交联度可显著提高液晶MIPs的识别性能,因此液晶MIPs这些特质有望使其成为新一代的MIPs。

关键词: 分子印迹聚合物, 液晶, 接枝聚合, 萘普生, 分子识别

Abstract:

Molecularly imprinted polymers (MIPs) incorporated with liquid crystalline monomers can imprint and recognize templates at a very low level of crosslinking, thus addressing challenges associated with conventional MIPs, such as the embedding of the imprinted sites, low binding capacity, and slow mass transfer due to the high degree of crosslinking. Compared with traditional MIPs, the prepared MIPs have a greater number of easily binding sites, which can effectively overcome the embedding and low utilization of imprinting sites. Simultaneously, with a decrease in the level of chemical crosslinking, the mass transfer of template molecules can be significantly improved. However, the imprinting effect of liquid crystalline MIPs is generally weaker than that of traditional MIPs due to the low degree of crosslinking. Therefore, to obtain liquid crystalline MIPs with a good imprinting effect, a series of low-crosslinked liquid crystalline molecularly imprinted monoliths were prepared by graft polymerization and evaluated by high performance liquid chromatography (HPLC) to systematically determine the relation between the polymerization parameters and the affinity of the resulting liquid crystalline MIPs. In this experiment, trimethylolpropane trimethacrylate (TRIM) was used to synthesize a monolithic column skeleton with toluene and dodecyl alcohol as porogens. (S)-Naproxen was used as a template and liquid crystalline monomer 4-(4-cyanophenyl)-cyclohexyl ethylene (CPCE) was added for grafting to synthesize the liquid crystalline MIP monolith. The influence of the acetonitrile content and pH in the mobile phase on the chromatographic retention of the template molecule was investigated. The results showed that the main force of MIP recognizing naproxen changed from hydrogen bonding to hydrophobic interaction by the addition of the liquid crystalline monomer. Frontal analysis and adsorption isotherm fitting, including Langmuir, Freundlich, and Scatchard fitting, showed that when the crosslinking degree was 15%, the liquid crystalline MIPs exhibited the highest imprinting factor and heterogeneity, and the specific adsorption was stronger than non-specific adsorption. By analyzing the stoichiometric displacement model, the total affinity of the MIP monoliths for the template molecules (ln A) was determined to be 0.645, significantly higher than that of its analogues, indicating that the liquid crystalline imprinted monolith had a higher total affinity for the template molecule. The spatial matching degree () of the template molecule to the cavity structures of MIPs was also very high, and only inferior to that of ketoprofen. Nevertheless, the ln A value of ketoprofen was only 0.242, which indicated that the spatial effect was not the key factor in determining the recognition ability of liquid crystalline imprinting systems. An analysis of the separation thermodynamics revealed that the separation of the liquid crystalline MIPs was an entropy-controlled process, while that of conventional liquid crystalline-free MIPs was an enthalpy-controlled process. Based on the above results, the addition of a liquid crystalline monomer may alter the recognition mechanism of MIPs, and an appropriately low crosslinking degree can significantly improve the recognition performance of liquid crystalline MIPs, paving the way for a new generation of MIPs.

Key words: molecularly imprinted polymers (MIPs), liquid crystalline, graft polymerization, naproxen, molecular recognition

中图分类号: