色谱 ›› 2021, Vol. 39 ›› Issue (9): 968-980.DOI: 10.3724/SP.J.1123.2021.07005
收稿日期:
2021-07-07
出版日期:
2021-09-08
发布日期:
2021-09-06
通讯作者:
秦建华
作者简介:
* Tel:(0411)84379059,E-mail: jhqin@dicp.ac.cn.基金资助:
CHEN Wenwen1,2, GAN Zhongqiao1,2, QIN Jianhua1,2,*()
Received:
2021-07-07
Online:
2021-09-08
Published:
2021-09-06
Contact:
QIN Jianhua
Supported by:
摘要:
外泌体是一类由细胞分泌的含有脂质、蛋白、核酸等多种物质的纳米级囊泡,主要参与细胞间的物质交换及信息传导,与多种疾病的发生发展密切相关。对外泌体进行深入研究,理解其生物学功能,对疾病诊断与治疗具有重要意义。由于外泌体尺寸较小且密度和体液接近,想要对复杂生物样本中的外泌体进行分离与分析十分困难。传统的外泌体分离方法如超速离心、超滤等大都需要借助大型仪器设备,且耗时长、操作复杂。因此迫切需要开发高效、便捷的外泌体分离检测手段。微流控技术因其微型化、高通量、可集成等特点,为外泌体的分离分析提供了一个新的平台。该文主要对近年来微流控技术在外泌体分离分析相关领域的研究进展进行了综述。重点从外泌体物理特性和生化特性两个角度出发,介绍了微流控芯片技术用于外泌体分离领域的主要原理、策略和方法。此外,还介绍了微流控技术与荧光、电化学传感、表面等离子体共振等多模态检测方法结合,实现外泌体一体化分析的新进展。最后,该文分析了目前微流控技术用于外泌体分离检测存在的挑战,并对其发展趋势和前景进行了展望。随着微流控外泌体分离分析装置的不断微型化、集成化、自动化,微流控芯片技术将在外泌体分离、生化检测、机制研究等方面将发挥越来越重要的作用。
中图分类号:
陈雯雯, 甘忠桥, 秦建华. 微流控技术在外泌体分离分析中的研究进展[J]. 色谱, 2021, 39(9): 968-980.
CHEN Wenwen, GAN Zhongqiao, QIN Jianhua. Microfluidic strategies for separation and analysis of circulating exosomes[J]. Chinese Journal of Chromatography, 2021, 39(9): 968-980.
Separation method | Principles | Sample volume | Sample | Advantages | Disadvantages |
---|---|---|---|---|---|
Ultra-centrifugation | size, density | large | cell culture medium, urine, et al. | without additional reagents | time consuming, instrument dependent, high shear stress |
Ultrafilter | size | relatively large | cell culture medium, urine, et al. | without additional reagents | impurities with similar size, high shear stress |
Immunocapture | antigen-antibody reaction | relatively small | urine, blood, et al. | high specificity | expensive, rely heavily on specific antibodies |
Precipitation | protein-polymer reaction | large | cell culture medium, urine, et al. | cheap, easy to operate | polymer contamination, low recovery rate |
Microfluidic chip | according to different design | small | blood, urine, precise samples | fixable, integrable | small separation volume, complex fabrication |
表1 不同外泌体分离方法的比较
Table 1 Comparison of different separation methods of exosomes
Separation method | Principles | Sample volume | Sample | Advantages | Disadvantages |
---|---|---|---|---|---|
Ultra-centrifugation | size, density | large | cell culture medium, urine, et al. | without additional reagents | time consuming, instrument dependent, high shear stress |
Ultrafilter | size | relatively large | cell culture medium, urine, et al. | without additional reagents | impurities with similar size, high shear stress |
Immunocapture | antigen-antibody reaction | relatively small | urine, blood, et al. | high specificity | expensive, rely heavily on specific antibodies |
Precipitation | protein-polymer reaction | large | cell culture medium, urine, et al. | cheap, easy to operate | polymer contamination, low recovery rate |
Microfluidic chip | according to different design | small | blood, urine, precise samples | fixable, integrable | small separation volume, complex fabrication |
图2 基于纳米孔膜、纳米阵列过滤分离外泌体的微流控方法
Fig. 2 Exosome separation microfluidic chips based on nano-filters and nano-arrays a. isolation and detection of EVs from urine using an integrated double-filtration microfluidic device[29]; b. exodisc for rapid, size-selective, and efficient isolation and analysis of nanoscale extracellular vesicles from biological samples[30].
图3 基于物理场分选分离外泌体的微流控方法
Fig. 3 Exosome separation microfluidic chips based on physical field Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows[36].
图4 基于固定基底免疫捕获分离外泌体的微流控方法
Fig. 4 Exosome separation chip based on immune capture on fixed base a. nano-interfaced microfluidic exosome platform (nano-IMEX)[39]; b. schematic illustration of the exosome capture and release using an exosome-specific dual-patterned immuno filtration (ExoDIF) device[40].
图5 基于非固定基底免疫捕获分离外泌体的微流控方法
Fig. 5 Exosome separation chip based on immune capture on unfixed base a. exosome isolation and detection using rapid inertial solution exchange[47]; b. exosome separation chip based on magnetic nanoparticles[48].
Microfluidic technologies | Sample | Sample volume/μL | Recovery/ % | Time/ min | Isolated size/nm | Ref. | |
---|---|---|---|---|---|---|---|
Based on physical characteristics of exosomes | |||||||
Membrane filtration | |||||||
Exodisc: double membranes | urine | 1000 | >95 | 30 | 20-600 | [ | |
ExoTIC: multi-membranes | culture media, plasma, urine | 5000 | >90 | 60 | ~30-100 | [ | |
Nano-column arrays | |||||||
Nano-DLD sorting | urine, serum | 900 | ~50 | 60 | ~30-200 | [ | |
Ciliated micropillar array | liposomes | 100 | ~60 | 10 | ~30-200 | [ | |
Physical field | |||||||
Acoustofluidic collection | human whole blood | 500 | 99 | 50 | ~100 | [ | |
Electric field | mouse whole blood | 1000 | 65 | 50 | ~10-400 | [ | |
Viscoelastic flow | fetal bovine serum | 100 | 93.6 | 10 | <200 | [ | |
Based on biochemical characteristics of exosomes | |||||||
Immune capture on fixed base | |||||||
SPRi antibody microarray | cell culture media | 300 | N/A | 1 | ~70 | [ | |
Nano-IMEX | plasma | 20 | ~80 | 40 | <150 | [ | |
-COCEVHB-chip | plasma | 1000 | 94 | 60 | ~100 | [ | |
ZnO chip | cell culture media, blood | 100 | >70 | 10 | 30-150 | [ | |
Immune capture on unfixed base | |||||||
ExoSearch chip: magnetic beads | plasma | 1000 | ~79.7 | 10 | <150 | [ | |
Polystyrene beads | cell culture media | 700 | N/A | 10 | 60-90 | [ | |
ExoTENPO chip: magnetic nanoparticles | plasma | 10000 | N/A | 60 | ~138-161 | [ |
表2 基于微流控技术的外泌体分离方法
Table 2 Exosome separation methods based on microfluidic chip
Microfluidic technologies | Sample | Sample volume/μL | Recovery/ % | Time/ min | Isolated size/nm | Ref. | |
---|---|---|---|---|---|---|---|
Based on physical characteristics of exosomes | |||||||
Membrane filtration | |||||||
Exodisc: double membranes | urine | 1000 | >95 | 30 | 20-600 | [ | |
ExoTIC: multi-membranes | culture media, plasma, urine | 5000 | >90 | 60 | ~30-100 | [ | |
Nano-column arrays | |||||||
Nano-DLD sorting | urine, serum | 900 | ~50 | 60 | ~30-200 | [ | |
Ciliated micropillar array | liposomes | 100 | ~60 | 10 | ~30-200 | [ | |
Physical field | |||||||
Acoustofluidic collection | human whole blood | 500 | 99 | 50 | ~100 | [ | |
Electric field | mouse whole blood | 1000 | 65 | 50 | ~10-400 | [ | |
Viscoelastic flow | fetal bovine serum | 100 | 93.6 | 10 | <200 | [ | |
Based on biochemical characteristics of exosomes | |||||||
Immune capture on fixed base | |||||||
SPRi antibody microarray | cell culture media | 300 | N/A | 1 | ~70 | [ | |
Nano-IMEX | plasma | 20 | ~80 | 40 | <150 | [ | |
-COCEVHB-chip | plasma | 1000 | 94 | 60 | ~100 | [ | |
ZnO chip | cell culture media, blood | 100 | >70 | 10 | 30-150 | [ | |
Immune capture on unfixed base | |||||||
ExoSearch chip: magnetic beads | plasma | 1000 | ~79.7 | 10 | <150 | [ | |
Polystyrene beads | cell culture media | 700 | N/A | 10 | 60-90 | [ | |
ExoTENPO chip: magnetic nanoparticles | plasma | 10000 | N/A | 60 | ~138-161 | [ |
Analysis method | Principles | Analysis objects | Ref. |
---|---|---|---|
Microscopy | the reaction between samples and electrons or detection | size, morphology | [ |
probes | |||
Light scattering | change of light scattering intensity | size distribution | [ |
TRPS | change of conductivity | size, concentration, zeta potential | [ |
Antibody detection | antigen-antibody reaction | proteins | [ |
Nano-FCM | the scattering light and fluorescent light of detected cells | size, biochemical characterization | [ |
表3 不同外泌体分析方法的比较
Table 3 Comparison of different analysis methods of exosomes
Analysis method | Principles | Analysis objects | Ref. |
---|---|---|---|
Microscopy | the reaction between samples and electrons or detection | size, morphology | [ |
probes | |||
Light scattering | change of light scattering intensity | size distribution | [ |
TRPS | change of conductivity | size, concentration, zeta potential | [ |
Antibody detection | antigen-antibody reaction | proteins | [ |
Nano-FCM | the scattering light and fluorescent light of detected cells | size, biochemical characterization | [ |
图6 微流控芯片与荧光检测联用用于外泌体检测
Fig. 6 Detection of exosomes by microfluidic chip combined with fluorescence detection a. hydrodynamic fluorescence analysis of exosomes based on microfluidic control[50]; b. dynamic fluorescence detection of exosomes in the process of elution on microfluidic chip[76].
图7 电化学传感检测外泌体
Fig. 7 Exosomes detection by electrochemical sensor Magnetic-based microfluidic device for on-chip isolation and detection of tumor-derived exosomes[84].
|
[1] | 黄剑英, 夏凌, 肖小华, 李攻科. 微芯片电泳技术在生物样品分离分析中的研究进展[J]. 色谱, 2023, 41(8): 641-650. |
[2] | 赵媛, 刘新, 张译丹, 张健, 刘向, 杨国锋. 基于串联质量标记的帕金森病血浆及血浆外泌体定量蛋白质组学分析[J]. 色谱, 2023, 41(12): 1073-1083. |
[3] | 郭民康, 张健. 基于超高效液相色谱-串联质谱的股骨头坏死组织外泌体脂质代谢组学分析[J]. 色谱, 2022, 40(2): 123-129. |
[4] | 贾璞, 边阳阳, 白亚军, 孟雪, 高朔漠, 赵晔, 蔡宇杰, 郑晓晖. 色谱在药物-机体复杂巨系统研究中的应用进展[J]. 色谱, 2021, 39(9): 950-957. |
[5] | 梁怡萧, 潘建章, 方群. 基于微流控技术的细胞水平高通量药物筛选系统的研究进展[J]. 色谱, 2021, 39(6): 567-577. |
[6] | 杨凯歌, 王薇薇, 王彦, 阎超. 血清和血清外泌体的蛋白质组分析及其在肝内胆管癌中的应用[J]. 色谱, 2021, 39(11): 1191-1202. |
[7] | 张维冰, 卢睿, 张凌怡. 不同金属/适配体双功能复合磁性纳米材料的制备及其对外泌体的富集性能[J]. 色谱, 2021, 39(10): 1128-1136. |
[8] | 张汉卿, 秦伟捷, 张养军. 4-巯基苯硼酸修饰二维二硫化钼纳米复合材料的制备及其用于N-糖肽特异性富集[J]. 色谱, 2020, 38(8): 891-899. |
[9] | 夏红军, 刘家玮, 白泉. 核壳型二氧化硅色谱填料的研究进展[J]. 色谱, 2020, 38(4): 372-382. |
[10] | 孙晓宇, 马润恬, 师彦平. 分子印迹技术在蛋白质分离分析中的研究进展[J]. 色谱, 2020, 38(1): 50-59. |
[11] | 方红霞, 钱晨, 崔朋, 刘京凤, 胡小坡, 何华龙, 孙继影. 超高效聚合物凝胶色谱法快速研究酸催化木质素解聚产物[J]. 色谱, 2019, 37(9): 983-989. |
[12] | 霍春晖, 李英华, 乔智, 尚志, 曹成喜, 洪洋, 肖华. 血清外泌体的蛋白质组分析及其在骨质疏松中的应用[J]. 色谱, 2019, 37(8): 863-871. |
[13] | 高方园, 焦丰龙, 张养军, 秦伟捷, 钱小红. 外泌体分离技术及其临床应用研究进展[J]. 色谱, 2019, 37(10): 1071-1083. |
[14] | 翁叶靖, 随志刚, 张丽华, 张玉奎. 外泌体分离及其蛋白质组学分析的研究进展[J]. 色谱, 2016, 34(12): 1131-1136. |
[15] | 陈方方, 师彦平. 分子印迹固相萃取技术在天然产物有效成分分离分析中的应用进展[J]. 色谱, 2013, 31(7): 626-633. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||