色谱 ›› 2022, Vol. 40 ›› Issue (4): 372-383.DOI: 10.3724/SP.J.1123.2021.09005
李俊豪1,2, 韩冠华1,2, 林晓涛2, 吴力强2, 钱纯亘2, 徐军发1,*()
收稿日期:
2021-09-05
出版日期:
2022-04-08
发布日期:
2021-11-24
通讯作者:
徐军发
基金资助:
LI Junhao1,2, HAN Guanhua1,2, LIN Xiaotao2, WU Liqiang2, QIAN Chungen2, XU Junfa1,*()
Received:
2021-09-05
Online:
2022-04-08
Published:
2021-11-24
Contact:
XU Junfa
Supported by:
摘要:
EB病毒(Epstein-Barr virus, EBV)的早期诊断能够降低患者发生重大疾病的风险。临床上常用的EBV抗体的检测方法存在耗时长、试剂消耗大和效率低等缺点。相比于传统的检测方法,微流控(microfluidics)技术具有高通量、试剂消耗少,污染少和自动化程度高等优点,磁免疫荧光技术具有检测效率高、信号强等优点,将两者的优势结合,能够弥补传统方法的不足。鉴于此,采用聚甲基丙烯酸甲酯(PMMA)作为芯片原材料,经过激光切割及真空热压加工工艺能够快速获得芯片。将包被抗原的磁珠及包被抗人抗体的荧光微球经过冷冻干燥工艺快速冻干成小球并嵌入芯片内,经过孵育和清洗后,进行检测。通过图像分析快速得到检测结果。通过精密度、特异性、剂量-反应曲线及检出限测试,进行性能验证。通过与化学发光免疫分析法(CLIA)检测的临床样本比对,进行方法学与临床应用评价。结果显示相对标准偏差(RSD)均小于10%。与多种常见的病原体抗体均无交叉反应。EB病毒衣壳抗原(Epstein-Barr viral capsid antigen, EB VCA)IgG项目的检出限为1.92 U/mL,线性范围为1.92~200 U/mL,阳性符合率为95.77%(68/71),阴性符合率为86%(43/50); EB VCA IgA项目的检出限为2.79 U/mL,线性范围为2.79~200 U/mL,阳性符合率为92%(46/50),阴性符合率为92.96%(66/71); EB病毒核心抗原1(Epstein-Barr nuclear antigen 1, EB NA1)IgG项目的检出限为3.13 U/mL,线性范围为3.13~200 U/mL,阳性符合率为92.96%(66/71),阴性符合率为92%(46/50); EB NA1 IgA项目的检出限为1.53 U/mL,线性范围为1.53~200 U/mL,阳性符合率为90%(45/50),阴性符合率为91.55%(65/71)。4个项目能在20 min内快速完成检测,且与临床上使用CLIA方法测试的结果具有良好的相关性,可以为临床提供一种快速、灵敏、简便、自动化程度高和易于基层推广的检测方法。
中图分类号:
李俊豪, 韩冠华, 林晓涛, 吴力强, 钱纯亘, 徐军发. 基于微流控技术的磁免疫荧光法在EB病毒检测中的应用[J]. 色谱, 2022, 40(4): 372-383.
LI Junhao, HAN Guanhua, LIN Xiaotao, WU Liqiang, QIAN Chungen, XU Junfa. Application of magnetic immunofluorescence assay based on microfluidic technology to detection of Epstein-Barr virus[J]. Chinese Journal of Chromatography, 2022, 40(4): 372-383.
图1 芯片二维结构示意图
Fig. 1 Schematic diagram of the two-dimensional (2D) structure of the chip a. 0.4 mm polymethyl methacrylate (PMMA); b. 0.4 mm PMMA and 1.0 mm silicone gasket, and back surface with pressure sensitive adhesive (PSA); c. 0.4 mm PMMA and back surface with PSA; d. front and back surface with PSA and 1.5 mm PMMA; e. 0.4 mm PMMA.
图2 芯片的三维结构示意图
Fig. 2 Three-dimensional (3D) structure of the chip a. 3D explosion view, the exploded view drawing of panel displays the interactive control layer (a1), chamber storage layer (a2), fluid channel layer (a3), flexible valve layer (a4), and the top layer (a5); b. 3D structure view; c. view of the flexible valve 3D structure; d. schematic diagram of the flexible valve.
图3 芯片及冻干微球实物图
Fig. 3 Pictures of chip and lyophilized microspheres a. chip; b. lyophilized microspheres; c. detection pool with lyophilized microspheres.
图4 芯片检测流程示意图
Fig. 4 Schematic diagram of chip detection process a. first incubation step; b. second incubation step; c. cleaning step; d. detection step; for information on No. 1-18, see Table 1.
Stage | Number in | Rotational speed/(r/min) | t/s | Control | Specification |
---|---|---|---|---|---|
First incubation | 1 | - | - | - | sampling |
2 | 500 | 10 | valve close | sample guiding | |
3 | 800 | 10 | valve close | sample aliquoting | |
4 | 500 | 300 | valve close | reacting (bi-directional running with 120°) | |
5 | 800 | 10 | magnetic beads accumulation; valve open | draining | |
Second incubation | 6 | - | - | magnetic beads re-suspension; valve close | adding deionized water (DW) |
7 | 300 | 10 | valve close | DW guiding | |
8 | 500 | 10 | valve close | DW guiding | |
9 | 800 | 10 | valve close | DW aliquoting | |
10 | 500 | 300 | valve close | reacting (bi-directional running with 120°) | |
11 | 800 | 10 | magnetic beads accumulation; valve open | draining | |
Cleaning | 12 | - | - | magnetic beads re-suspension; valve close | adding cleaning buffer (CB) |
13 | 300 | 10 | valve close | CB guiding | |
14 | 500 | 10 | valve close | CB guiding | |
15 | 800 | 10 | valve close | CB aliquoting | |
16 | 500 | 300 | valve close | cleaning (bi-directional running with 120°) | |
17 | 800 | 10 | magnetic beads accumulation; valve open | draining | |
Detection | 18 | - | - | - | signal collecting |
表1 芯片检测流程控制程序
Table 1 Control procedure of chip detection process
Stage | Number in | Rotational speed/(r/min) | t/s | Control | Specification |
---|---|---|---|---|---|
First incubation | 1 | - | - | - | sampling |
2 | 500 | 10 | valve close | sample guiding | |
3 | 800 | 10 | valve close | sample aliquoting | |
4 | 500 | 300 | valve close | reacting (bi-directional running with 120°) | |
5 | 800 | 10 | magnetic beads accumulation; valve open | draining | |
Second incubation | 6 | - | - | magnetic beads re-suspension; valve close | adding deionized water (DW) |
7 | 300 | 10 | valve close | DW guiding | |
8 | 500 | 10 | valve close | DW guiding | |
9 | 800 | 10 | valve close | DW aliquoting | |
10 | 500 | 300 | valve close | reacting (bi-directional running with 120°) | |
11 | 800 | 10 | magnetic beads accumulation; valve open | draining | |
Cleaning | 12 | - | - | magnetic beads re-suspension; valve close | adding cleaning buffer (CB) |
13 | 300 | 10 | valve close | CB guiding | |
14 | 500 | 10 | valve close | CB guiding | |
15 | 800 | 10 | valve close | CB aliquoting | |
16 | 500 | 300 | valve close | cleaning (bi-directional running with 120°) | |
17 | 800 | 10 | magnetic beads accumulation; valve open | draining | |
Detection | 18 | - | - | - | signal collecting |
Channel location | Maximum channel depth/μm | Channel cross-sectional area/μm2 |
---|---|---|
Between sampling pool and liquid separation pool | 93.51±2.94 | 15935.2±712.5 |
Between fluorescent bead pool and liquid separation pool | 96.44±3.28 | 16718.7±654.6 |
Between left fluid sac pool and fluorescent bead pool | 92.43±3.66 | 15502.3±857.4 |
Between detection pool and waste liquid pool | 96.93±2.78 | 16614.1±811.3 |
表2 各通道最大深度及通道横截面积
Table 2 Maximum depth and cross-sectional area of each channel
Channel location | Maximum channel depth/μm | Channel cross-sectional area/μm2 |
---|---|---|
Between sampling pool and liquid separation pool | 93.51±2.94 | 15935.2±712.5 |
Between fluorescent bead pool and liquid separation pool | 96.44±3.28 | 16718.7±654.6 |
Between left fluid sac pool and fluorescent bead pool | 92.43±3.66 | 15502.3±857.4 |
Between detection pool and waste liquid pool | 96.93±2.78 | 16614.1±811.3 |
图6 EB VCA IgG、EB VCA IgA、EB NA1 IgG及EB NA1 IgA的ROC曲线(n=121)
Fig. 6 Receiver operating characteristic curves (ROC) of EB VCA IgG, EB VCA IgA, EB NA1 IgG and EB NA1 IgA (n=121)
Item | Normal serum sample number | Positive serum sample number | OOP/(U/mL) | Sensitivity/% | Specificity/% | AUC |
---|---|---|---|---|---|---|
EB VCA IgG | 46 | 75 | 9.97 | 93.3 | 91.3 | 0.9788 |
EB VCA IgA | 70 | 51 | 9.95 | 92.2 | 92.9 | 0.9784 |
EB NA1 IgG | 51 | 70 | 9.97 | 94.3 | 90.2 | 0.9672 |
EB NA1 IgA | 52 | 69 | 10.05 | 90.4 | 92.8 | 0.9727 |
表3 ROC曲线下最佳临界点、灵敏度、特异性、曲线下方面积及参考样本数
Table 3 Optimal operating point (OOP), sensitivity, specificity, area under curve (AUC), and reference sample number under the ROC curve
Item | Normal serum sample number | Positive serum sample number | OOP/(U/mL) | Sensitivity/% | Specificity/% | AUC |
---|---|---|---|---|---|---|
EB VCA IgG | 46 | 75 | 9.97 | 93.3 | 91.3 | 0.9788 |
EB VCA IgA | 70 | 51 | 9.95 | 92.2 | 92.9 | 0.9784 |
EB NA1 IgG | 51 | 70 | 9.97 | 94.3 | 90.2 | 0.9672 |
EB NA1 IgA | 52 | 69 | 10.05 | 90.4 | 92.8 | 0.9727 |
Item | Regression equation | R2 | Linear range/ (U/mL) | LOD/ (U/mL) |
---|---|---|---|---|
EB VCA IgG | Y=0.8532X+9.044 | 0.9984 | 1.92-200 | 1.92 |
EB VCA IgA | Y=1.150X+9.354 | 0.9958 | 2.79-200 | 2.79 |
EB NA1 IgG | Y=1.127X+7.172 | 0.9986 | 3.13-200 | 3.13 |
EB NA1 IgA | Y=1.191X+14.77 | 0.9952 | 1.53-200 | 1.53 |
表4 各项目的剂量反应线性关系和检出限
Table 4 Linear relationship of dose response and LOD of each item
Item | Regression equation | R2 | Linear range/ (U/mL) | LOD/ (U/mL) |
---|---|---|---|---|
EB VCA IgG | Y=0.8532X+9.044 | 0.9984 | 1.92-200 | 1.92 |
EB VCA IgA | Y=1.150X+9.354 | 0.9958 | 2.79-200 | 2.79 |
EB NA1 IgG | Y=1.127X+7.172 | 0.9986 | 3.13-200 | 3.13 |
EB NA1 IgA | Y=1.191X+14.77 | 0.9952 | 1.53-200 | 1.53 |
Sample No. | EB VCA IgG | EB NA1 IgG | EB VCA IgA | EB NA1 IgA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Average/(U/mL) | RSD/% | Average/(U/mL) | RSD/% | Average/(U/mL) | RSD/% | Average/(U/mL) | RSD/% | ||||
1 | 17.36 | 2.86 | 19.21 | 4.7 | 15.18 | 6.54 | 22.56 | 4.02 | |||
2 | 135.8 | 4.17 | 73.67 | 5.2 | 96.98 | 5.83 | 100.12 | 5.5 |
表5 各项目重复性测试结果(n=10)
Table 5 Repeatability test results of each item (n=10)
Sample No. | EB VCA IgG | EB NA1 IgG | EB VCA IgA | EB NA1 IgA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Average/(U/mL) | RSD/% | Average/(U/mL) | RSD/% | Average/(U/mL) | RSD/% | Average/(U/mL) | RSD/% | ||||
1 | 17.36 | 2.86 | 19.21 | 4.7 | 15.18 | 6.54 | 22.56 | 4.02 | |||
2 | 135.8 | 4.17 | 73.67 | 5.2 | 96.98 | 5.83 | 100.12 | 5.5 |
Item | Coincident rate | Kappa | |
---|---|---|---|
Positive | Negative | ||
EB VCA IgG | 95.8% (68/71) | 86.0% (43/50) | 0.828 |
EB NA IgG | 92.0% (46/50) | 93.0% (66/71) | 0.847 |
EB VCA IgA | 93.0% (66/71) | 92.0% (46/50) | 0.847 |
EB NA IgA | 90.0% (45/50) | 91.6% (65/71) | 0.813 |
表6 各项目方法学比对及Kappa值
Table 6 Methodological comparison and Kappa valve of each item
Item | Coincident rate | Kappa | |
---|---|---|---|
Positive | Negative | ||
EB VCA IgG | 95.8% (68/71) | 86.0% (43/50) | 0.828 |
EB NA IgG | 92.0% (46/50) | 93.0% (66/71) | 0.847 |
EB VCA IgA | 93.0% (66/71) | 92.0% (46/50) | 0.847 |
EB NA IgA | 90.0% (45/50) | 91.6% (65/71) | 0.813 |
Item | Difference vs. average | Ratio vs. average |
---|---|---|
EB VCA IgG | 8.3% (10/121) | 0 (0/121) |
EB VCA IgA | 6.6% (8/121) | 0 (0/121) |
EB VCA IgG | 7.4% (9/121) | 1.7% (2/121) |
EB VCA IgG | 8.3% (10/121) | 0 (0/121) |
表7 各项目Bland-Altman图的95%置信区间外的样本占比
Table 7 Sample proportion above the 95% confidence interval of Bland-Altman of each item
Item | Difference vs. average | Ratio vs. average |
---|---|---|
EB VCA IgG | 8.3% (10/121) | 0 (0/121) |
EB VCA IgA | 6.6% (8/121) | 0 (0/121) |
EB VCA IgG | 7.4% (9/121) | 1.7% (2/121) |
EB VCA IgG | 8.3% (10/121) | 0 (0/121) |
Material | Category | Cost/Yuan | Total/Yuan | Specification |
---|---|---|---|---|
Chip sheet | chip material | 5-7 | 8.68-11.18 | price from large production (10000+) |
PSA | chip material | 1-1.5 | price from large production (10000+) | |
Magnetic beads | reagent material | 0.2×4 | price from commercial products | |
Fluorescent micro-particles | reagent material | 0.08×4 | price from commercial products | |
Antigen (EB VCA and EB NA1) | reagent material | (0.3+0.35)×2 | 0.3 for EB VCA and 0.35 for EB NA1, both from | |
commercial products | ||||
Antibody (anti-human IgA and | reagent material | (0.03+0.1)×2 | 0.03 for anti-human IgG and 0.1 for anti-human | |
anti-human IgG) | IgA, both from commercial products | |||
Centrifuge module | instrument material | 2500-3000 | 6000-7500 | price from commercial products |
Microscope module | instrument material | 2000-2500 | price from commercial products | |
Fixation module | instrument material | 300-400 | price from commercial products | |
Valve control module | instrument material | 300-400 | price from commercial products | |
Magnet control module | instrument material | 600-800 | price from commercial products | |
Software | 300-400 | price from YHLO |
表8 微流控芯片、试剂及仪器成本价目表
Table 8 Cost list of chips, reagents, and instruments
Material | Category | Cost/Yuan | Total/Yuan | Specification |
---|---|---|---|---|
Chip sheet | chip material | 5-7 | 8.68-11.18 | price from large production (10000+) |
PSA | chip material | 1-1.5 | price from large production (10000+) | |
Magnetic beads | reagent material | 0.2×4 | price from commercial products | |
Fluorescent micro-particles | reagent material | 0.08×4 | price from commercial products | |
Antigen (EB VCA and EB NA1) | reagent material | (0.3+0.35)×2 | 0.3 for EB VCA and 0.35 for EB NA1, both from | |
commercial products | ||||
Antibody (anti-human IgA and | reagent material | (0.03+0.1)×2 | 0.03 for anti-human IgG and 0.1 for anti-human | |
anti-human IgG) | IgA, both from commercial products | |||
Centrifuge module | instrument material | 2500-3000 | 6000-7500 | price from commercial products |
Microscope module | instrument material | 2000-2500 | price from commercial products | |
Fixation module | instrument material | 300-400 | price from commercial products | |
Valve control module | instrument material | 300-400 | price from commercial products | |
Magnet control module | instrument material | 600-800 | price from commercial products | |
Software | 300-400 | price from YHLO |
|
[1] | 赵孟乾, 刘海涛, 张旭, 甘忠桥, 秦建华. 全水相微流控系统一步制备球丝异质载体用作细胞三维培养[J]. 色谱, 2023, 41(9): 742-751. |
[2] | 米琨, 章文天, 闻路红, 王进. 脉冲直流电喷雾质谱法快速检测毛发中4种苯丙胺类药物[J]. 色谱, 2023, 41(12): 1141-1148. |
[3] | 熊士领, 洪欢欢, 闻路红, 胡舜迪, 陈安琪, 熊伟, 陈腊. 基于敞开式直接电离质谱技术的尿液中毒品检测[J]. 色谱, 2022, 40(7): 677-683. |
[4] | 曹荣凯, 张敏, 于浩, 秦建华. 微流控芯片系统在循环肿瘤细胞分离检测中的应用进展[J]. 色谱, 2022, 40(3): 213-223. |
[5] | 陈雯雯, 甘忠桥, 秦建华. 微流控技术在外泌体分离分析中的研究进展[J]. 色谱, 2021, 39(9): 968-980. |
[6] | 张昱, 齐骥, 刘丰, 王宁, 孙西艳, 崔荣, 于佳洛, 叶嘉明, 刘萍, 李博伟, 陈令新. 微流控纸芯片在环境分析检测中的应用[J]. 色谱, 2021, 39(8): 802-815. |
[7] | 马嘉欣, 连子如, 何橙, 王江涛, 于仁成. 新型量子点基分子印迹荧光传感器在快速检测中的应用[J]. 色谱, 2021, 39(8): 775-780. |
[8] | 梁怡萧, 潘建章, 方群. 基于微流控技术的细胞水平高通量药物筛选系统的研究进展[J]. 色谱, 2021, 39(6): 567-577. |
[9] | 温翰荣, 朱珏, 张博. 芯片液相色谱技术进展[J]. 色谱, 2021, 39(4): 357-367. |
[10] | 秦少杰, 白玉, 刘虎威. 基于质谱的单细胞蛋白质组学分析方法及应用[J]. 色谱, 2021, 39(2): 142-151. |
[11] | 崔嘉轩, 刘璐, 李东浩, 朴相范. 外加场分离技术与微流控技术联用在微纳尺度物质分离中的研究进展[J]. 色谱, 2021, 39(11): 1157-1170. |
[12] | 袁颖欣, 樊晨, 潘建章, 方群. 基于微流控驱动和控制技术的临床生化分析系统研究进展[J]. 色谱, 2020, 38(2): 183-194. |
[13] | 吴文伟, 王翌, 刘可鑫, 李天松, 杨咏洁. 免标记比色核酸适配体传感器同步快速检测孔雀石绿和无色孔雀石绿[J]. 色谱, 2020, 38(11): 1332-1339. |
[14] | 刘玉兰, 陈雅莉, 肖小华, 夏凌, 李攻科. 基于电驱动在线快速分离富集技术的研究进展[J]. 色谱, 2020, 38(10): 1197-1205. |
[15] | 石杨, 邵小光. 微流控芯片技术在生殖研究中的进展[J]. 色谱, 2019, 37(9): 925-931. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||