色谱 ›› 2022, Vol. 40 ›› Issue (12): 1111-1118.DOI: 10.3724/SP.J.1123.2022.01022

• 研究论文 • 上一篇    下一篇

超声提取-气相色谱-质谱法测定本草香中16种颗粒态多环芳烃含量及其排放特征分析

蔡美贞()   

  1. 国家燃香类产品质量监督检验中心(福建), 福建 泉州 362600
  • 收稿日期:2022-01-25 出版日期:2022-12-08 发布日期:2022-11-29
  • 通讯作者: 蔡美贞
  • 基金资助:
    泉州市科技计划项目(2019N030)

Determination of 16 particle-phase polycyclic aromatic hydrocarbons in herbal incense by ultrasonic extraction-gas chromatography-mass spectrometry and analysis of emission characteristics

CAI Meizhen()   

  1. National Quality Supervision and Inspection Center for Incense Products (Fujian), Quanzhou 362600, China
  • Received:2022-01-25 Online:2022-12-08 Published:2022-11-29
  • Contact: CAI Meizhen
  • Supported by:
    Science and Technology Plan Project of Quanzhou(2019N030)

摘要:

本草香颗粒态多环芳烃(PAHs)的分析对探究人体健康和环境安全的影响具有重要意义,但目前相关研究主要针对竹签香,对于配方更为复杂、日常使用更为频繁的本草香颗粒态PAHs定量分析研究十分有限且缺少针对性。为了研究本草香颗粒态PAHs的排放因子和排放特征,在自制的试验舱内采集5种本草香燃烧后的颗粒物,通过优化萃取溶剂、超声时间和仪器分析条件,建立了超声提取-气相色谱-质谱(GC-MS)测定本草香燃烧后颗粒物上所吸附的16种PAHs的方法。通过采集0.8 g样品,切取整片滤膜样品,使用正己烷-二氯甲烷(1∶1, v/v)进行超声萃取,经浓缩定容过滤后使用气相色谱-质谱分析,内标法定量。结果表明,16种PAHs在0.1~5.0 μg/mL范围内线性良好(相关系数r2>0.998),方法检出限(MDL)为0.4~3.8 ng/g;低、高2个水平的加标回收率分别为77.4%~99.5%和82.0%~101.3%;相对标准偏差(RSD)为0.7%~7.2%。5种本草香颗粒态PAHs的排放因子为4.60~11.89 μg/g。本草香的16种颗粒态PAHs中菲(Phe)的含量均为最高,所占比例为24.85%~42.59%,其次为荧蒽(Flu)、芘(Pyr)、 (Chr)、蒽(Ant)。本草香颗粒态PAHs中Phe的含量稳定且占比明显高于其他室内燃烧源,可将Phe作为本草香的颗粒态特征PAHs。颗粒态PAHs主要分布在3环和4环上,3环和4环PAHs占比之和为83.84%~96.31%。颗粒态的Phe/Flu比值可作为辨别不同室内燃烧源中燃香释放源的特征比值。该方法所需样品量少,灵敏度高,前处理操作简便,适用于燃香类产品中PAHs的快速检测,同时为了解本草香颗粒态PAHs分布规律和健康危害提供科学数据。

关键词: 超声提取, 气相色谱-串联质谱, 多环芳烃, 颗粒态, 排放特征, 特征比值, 本草香

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) have attracted global attention because they are carcinogens and mutagenic to humans. To date, more than 200 PAHs have been found. The United States Environmental Protection Agency (USEPA) has designated 16 PAH species as priority control pollutants due to their highly toxic substances. Herbal incense is frequently used in daily life. As a result, it is critical to investigate its impact on human health and environmental safety. However, research on particle-phase PAHs is very limited and inapplicable. The current research focuses mainly on bamboo incense, which has a simpler formula than herbal incense.
In this study, the emission factor and emission characteristics of particle-phase PAHs from herbal incense were described. A method combining ultrasonic and gas chromatography-mass spectrometry (GC-MS) was developed for the simultaneous determination of 16 particle-phase PAHs of herbal incense. The settings for extraction solvent, ultrasonic time, and instrument analysis conditions were optimized. In the test chamber, samples were collected by burning 0.8 g of herbal incense. After combustion, PAHs adsorbing on the particles of herbal incense were collected on a quartz filter. The whole filter sample was sliced and extracted with n-hexane-dichloromethane (1∶1, v/v). A rotary evaporator was used to concentrate the extract. GC-MS was used to analyze the prepared sample. The internal standard method was used to perform quantitative analysis on the target compounds. The linearities of the 16 target PAHs were good between mass concentrations of 0.1-5.0 μg/mL, with correlation coefficients greater than 0.998. The method detection limits (MDLs) of the 16 PAHs ranged from 0.4 to 3.8 ng/g. The 0.625 μg/g and 1.25 μg/g spiked recoveries ranged from 77.4% to 99.5% and 82.0% to 101.3%, respectively. The relative standard deviations (RSDs) of the 16 PAHs were ranged from 0.7% to 7.2% (n=6). The emission factors of particle-phase PAHs from five different kinds of herbal incense ranged from 4.60 to 11.89 μg/g. The highest concentration of phenanthrene (Phe) was found in 16 particle-phase individual PAHs of herbal incense. Fluoranthene (Flu), pyrene (Pyr), chrysene (Chr) and anthracene (Ant) concentration were ranked after Phe. The sum of these five proportions was 73.00%-89.97%. The proportion of Phe in herbal incense particle-phase PAHs was significantly higher than that of other indoor combustion sources. As a result, Phe could be used to identify individual PAHs in the particle-phase of herbal incense. The particle-phase PAHs were mainly distributed on the 3-ring and 4-ring, with a sum of 83.84% to 96.31% on the 3-ring and 4-ring. The proportion of high-molecular weight PAHs in the samples ranged from 44.25% to 63.31%. The proportion of low-molecular weight PAHs in the samples ranged from 36.69% to 55.75%. The incense source could be distinguished from other indoor combustion sources by its distinctive Phe/Flu ratio. The established method has high sensitivity, simple operation, and requires fewer samples. This method is suitable for rapidly detecting PAHs in burning incense. At the same time, it provides scientific data for further studies on the distribution and health effects of particle-phase PAHs of herbal incense.

Key words: ultrasonic extraction, gas chromatography-mass spectrometry (GC-MS), polycyclic aromatic hydrocarbons (PAHs), particle-phase, emission characteristics, characteristic ratio, herbal incense

中图分类号: