色谱 ›› 2022, Vol. 40 ›› Issue (12): 1049-1063.DOI: 10.3724/SP.J.1123.2022.03041
刘婷婷1,2, 王琪1, 叶翰章1, 孔佳1, 李宇浩1, 顾婧婧1, 丁永立1, 张占恩1, 王学东1,*()
收稿日期:
2022-03-29
出版日期:
2022-12-08
发布日期:
2022-11-29
通讯作者:
王学东
基金资助:
LIU Tingting1,2, WANG Qi1, YE Hanzhang1, KONG Jia1, LI Yuhao1, GU Jingjing1, DING Yongli1, ZHANG Zhan’en1, WANG Xuedong1,*()
Received:
2022-03-29
Online:
2022-12-08
Published:
2022-11-29
Contact:
WANG Xuedong
Supported by:
摘要:
采用简单高温煅烧法成功制备了磁性钴镍基氮掺杂三维碳纳米管与石墨烯复合材料(CoNi@NGC),将其作为吸附剂用于水体中6种双酚类化合物(BPs)的吸附性能和机理研究。将CoNi@NGC复合纳米材料用作萃取介质,运用酸碱泡腾片的CO2强力分散作用,开发了泡腾反应强化的分散固相微萃取前处理方法,结合高效液相色谱-荧光检测(HPLC-FLD)快速定量饮料中痕量BPs。采用扫描电镜、透射电镜、傅里叶红外光谱、氮气吸脱附、X射线光电子能谱和磁滞回线等技术手段对材料形貌结构进行表征,结果显示:该吸附剂成功实现氮元素的掺杂,且具有较大的比表面积(109.42 m2/g)、丰富的孔径及较强的磁性(17.98 emu/g)。吸附剂投加量、pH、温度、时间等因子优化试验表明:当pH=7,在初始质量浓度为5 mg/L的BPs混合溶液中投加5 mg CoNi@NGC, 298 K反应5 min,对双酚M(BPM)、双酚A(BPA)的吸附率分别高达99.01%和98.21%。作用90 min时对双酚Z(BPZ)、BPA、BPM的吸附率近100%。在吸附过程中,BPs与CoNi@NGC之间的整个吸附过程主要受氢键、静电作用和π-π共轭作用共同控制。整个吸附过程符合Freundlich吸附等温线模型和准二级动力学方程,吸附自发进行。进一步将CoNi@NGC作为萃取介质制备成磁性泡腾片,利用泡腾分散微萃取技术高效富集和提取6种盒装饮料中的BPs,优化了影响富集效果的泡腾片的存在与否、洗脱剂种类、洗脱时间、洗脱体积等关键因子,在最佳萃取条件下(pH=7,投加5 mg CoNi@NGC, 2 mL丙酮洗脱6 min),结合HPLC-FLD,新开发的泡腾分散微萃取方法提供的检出限为0.06~0.20 μg/L,定量限为0.20~0.66 μg/L,日内和日间精密度分别为1.44%~4.76%和1.69%~5.36%,在实际样品中不同水平下的加标回收率为82.4%~103.7%,在桃汁中检测到BPA和双酚B(BPB)分别为2.09 μg/L和1.37 μg/L。再生试验表明该吸附材料至少可以重复使用5次以上,显著降低了分析的试验成本。与其他方法相比,该方法具有灵敏度高、萃取速度快、环境友好等优点,在常规食品污染监测中具有较强的应用价值。
中图分类号:
刘婷婷, 王琪, 叶翰章, 孔佳, 李宇浩, 顾婧婧, 丁永立, 张占恩, 王学东. 磁性三维氮掺杂碳纳米材料对6种双酚类化合物的吸附性能及其在泡腾分散微萃取中的应用[J]. 色谱, 2022, 40(12): 1049-1063.
LIU Tingting, WANG Qi, YE Hanzhang, KONG Jia, LI Yuhao, GU Jingjing, DING Yongli, ZHANG Zhan’en, WANG Xuedong. Adsorption characteristics of six bisphenol compounds on magnetic three-dimensional nitrogen-doped carbon nanomaterials and their use in effervescent reaction-assisted dispersive microextraction[J]. Chinese Journal of Chromatography, 2022, 40(12): 1049-1063.
图2 CoNi@NGC材料吸附BPs前后的(a)X射线单晶衍射图、(b)红外光谱图、(c)氮气吸脱附曲线和孔径分布曲线(内嵌)、(d)磁滞回线
Fig. 2 (a) X-ray diffraction patterns, (b) FT-IR spectra, (c) N2 adsorption/desorption isotherms and distribution of pore diameters (inset), and (d) magnetization curves of the CoNi@NGC nanocomposites before and after biphenol (BP) adsorption
图3 CoNi@NGC材料吸附BPs前后X射线光电子能谱分析
Fig. 3 XPS spectra of the CoNi@NGC nanocomposites before and after BP adsorption a. survey; b. Co 2p; c. Ni 2p; d. C 1s; e. N 1s.
Target | Langmuir | Freundlich | D-R | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
b | Qm | R2 | K | 1/n | R2 | Qm | E | R2 | |||
BPF | 0.31 | 243.9 | 0.867 | 49.57 | 0.788 | 0.886 | 142.49 | 2.102 | 0.929 | ||
BPZ | 0.25 | 666.7 | 0.703 | 128.97 | 0.902 | 0.980 | 255.78 | 2.704 | 0.976 | ||
BPA | 1.21 | 344.8 | 0.817 | 182.05 | 0.733 | 0.922 | 222.05 | 3.522 | 0.970 | ||
BPB | 0.03 | 2000 | 0.405 | 55.53 | 0.982 | 0.998 | 144.25 | 2.072 | 0.898 | ||
BPAP | 0.11 | 769.2 | 0.701 | 71.86 | 0.936 | 0.959 | 158.02 | 2.250 | 0.945 | ||
BPM | 0.12 | 588.2 | 0.596 | 316.59 | 0.914 | 0.800 | 360.36 | 3.026 | 0.907 |
表1 298 K下CoNi@NGC吸附BPs的Langmuir、Freundlich和D-R吸附等温线参数和拟合常数
Table 1 Parameters of the Langmuir, Freundlich, and D-R isotherms for adsorption of BPs on CoNi@NGC at 298 K
Target | Langmuir | Freundlich | D-R | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
b | Qm | R2 | K | 1/n | R2 | Qm | E | R2 | |||
BPF | 0.31 | 243.9 | 0.867 | 49.57 | 0.788 | 0.886 | 142.49 | 2.102 | 0.929 | ||
BPZ | 0.25 | 666.7 | 0.703 | 128.97 | 0.902 | 0.980 | 255.78 | 2.704 | 0.976 | ||
BPA | 1.21 | 344.8 | 0.817 | 182.05 | 0.733 | 0.922 | 222.05 | 3.522 | 0.970 | ||
BPB | 0.03 | 2000 | 0.405 | 55.53 | 0.982 | 0.998 | 144.25 | 2.072 | 0.898 | ||
BPAP | 0.11 | 769.2 | 0.701 | 71.86 | 0.936 | 0.959 | 158.02 | 2.250 | 0.945 | ||
BPM | 0.12 | 588.2 | 0.596 | 316.59 | 0.914 | 0.800 | 360.36 | 3.026 | 0.907 |
Target | Temperature/ K | ΔH/ (kJ/mol) | ΔG/ (kJ/mol) | ΔS/ (kJ/(mol·K)) |
---|---|---|---|---|
BPF | 298 | -11.9624 | -0.1011 | |
308 | -42.0929 | -10.4467 | -0.1027 | |
318 | -9.9517 | -0.1011 | ||
BPZ | 298 | -12.7168 | -0.1035 | |
308 | -43.522 | -19.9705 | -0.1058 | |
318 | -10.6635 | -0.1034 | ||
BPA | 298 | -10.1827 | -0.1084 | |
308 | -45.5466 | -9.3201 | -0.1101 | |
318 | -9.1588 | -0.1084 | ||
BPB | 298 | -13.2377 | -0.0517 | |
308 | -25.6021 | -11.6394 | -0.0528 | |
318 | -11.0809 | -0.0511 | ||
BPAP | 298 | -10.1828 | -0.1252 | |
308 | -48.414 | -9.3201 | -0.123 | |
318 | -9.1589 | -0.1252 | ||
BPM | 298 | -11.1121 | -0.0136 | |
308 | -14.7964 | -10.5147 | -0.013 | |
318 | -8.5938 | -0.0136 |
表2 CoNi@NGC吸附BPs的热力学参数
Table 2 Thermodynamic parameters of BP adsorption using the CoNi@NGC nanocomposites
Target | Temperature/ K | ΔH/ (kJ/mol) | ΔG/ (kJ/mol) | ΔS/ (kJ/(mol·K)) |
---|---|---|---|---|
BPF | 298 | -11.9624 | -0.1011 | |
308 | -42.0929 | -10.4467 | -0.1027 | |
318 | -9.9517 | -0.1011 | ||
BPZ | 298 | -12.7168 | -0.1035 | |
308 | -43.522 | -19.9705 | -0.1058 | |
318 | -10.6635 | -0.1034 | ||
BPA | 298 | -10.1827 | -0.1084 | |
308 | -45.5466 | -9.3201 | -0.1101 | |
318 | -9.1588 | -0.1084 | ||
BPB | 298 | -13.2377 | -0.0517 | |
308 | -25.6021 | -11.6394 | -0.0528 | |
318 | -11.0809 | -0.0511 | ||
BPAP | 298 | -10.1828 | -0.1252 | |
308 | -48.414 | -9.3201 | -0.123 | |
318 | -9.1589 | -0.1252 | ||
BPM | 298 | -11.1121 | -0.0136 | |
308 | -14.7964 | -10.5147 | -0.013 | |
318 | -8.5938 | -0.0136 |
Target | Experiment Qe,exp/(mg/g) | Pseudo-first-order kinetic | Pseudo-second-order kinetic | ||||||
---|---|---|---|---|---|---|---|---|---|
k/min-1 | Q/(mg/g) | R2 | k/((mg/g)-1·min-1) | Q/(mg/g) | R2 | h/(mg/(g·min)) | |||
BPF | 65.54 | 0.025 | 91.95 | 0.932 | 0.005 | 90.91 | 0.999 | 0.21 | |
BPZ | 59.29 | 0.026 | 101.06 | 0.952 | 0.033 | 100 | 0.995 | 10.89 | |
BPA | 41.09 | 0.004 | 103.48 | 0.987 | 0.07 | 101.01 | 0.999 | 49.99 | |
BPB | 23.31 | 0.02 | 79.92 | 0.665 | 0.013 | 76.92 | 0.999 | 0.99 | |
BPAP | 44.03 | 0.018 | 91.14 | 0.714 | 0.01 | 86.96 | 0.999 | 0.76 | |
BPM | 2.51 | 0.04 | 101.05 | 0.853 | 0.089 | 101.01 | 0.999 | 80.82 |
表3 298 K下CoNi@NGC吸附BPs的动力学参数
Table 3 Kinetic parameters of BP adsorption using the CoNi@NGC nanocomposites at 298 K
Target | Experiment Qe,exp/(mg/g) | Pseudo-first-order kinetic | Pseudo-second-order kinetic | ||||||
---|---|---|---|---|---|---|---|---|---|
k/min-1 | Q/(mg/g) | R2 | k/((mg/g)-1·min-1) | Q/(mg/g) | R2 | h/(mg/(g·min)) | |||
BPF | 65.54 | 0.025 | 91.95 | 0.932 | 0.005 | 90.91 | 0.999 | 0.21 | |
BPZ | 59.29 | 0.026 | 101.06 | 0.952 | 0.033 | 100 | 0.995 | 10.89 | |
BPA | 41.09 | 0.004 | 103.48 | 0.987 | 0.07 | 101.01 | 0.999 | 49.99 | |
BPB | 23.31 | 0.02 | 79.92 | 0.665 | 0.013 | 76.92 | 0.999 | 0.99 | |
BPAP | 44.03 | 0.018 | 91.14 | 0.714 | 0.01 | 86.96 | 0.999 | 0.76 | |
BPM | 2.51 | 0.04 | 101.05 | 0.853 | 0.089 | 101.01 | 0.999 | 80.82 |
Target | External diffusion | Internal diffusion | Adsorption equilibrium | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kd | I | R2 | Kd | I | R2 | Kd | I | R2 | ||||||||||||||
BPF | 14.392 | 33.542 | 0.938 | 1.835 | 71.638 | 0.999 | 1.264 | 76.393 | 0.937 | |||||||||||||
BPZ | 17.499 | 30.241 | 0.869 | 2.35 | 77.172 | 0.904 | 1.273 | 84.65 | 0.978 | |||||||||||||
BPA | 2.889 | 90.767 | 0.856 | 0.425 | 98.88 | 0.937 | 0.394 | 99.621 | 0.777 | |||||||||||||
BPB | 10.876 | 31.117 | 0.956 | 0.333 | 74.943 | 0.947 | 0.172 | 75.479 | 0.774 | |||||||||||||
BPAP | 4.535 | 63.639 | 0.897 | 5.533 | 68.042 | 0.999 | 0.343 | 82.917 | 0.918 | |||||||||||||
BPM | 0.065 | 99.871 | 0.999 | 0.056 | 100.24 | 0.997 | 0.004 | 100.28 | 0.999 |
表4 Weber-Morris模型分段拟合参数
Table 4 Fitting parameters of the Weber-Morris model
Target | External diffusion | Internal diffusion | Adsorption equilibrium | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kd | I | R2 | Kd | I | R2 | Kd | I | R2 | ||||||||||||||
BPF | 14.392 | 33.542 | 0.938 | 1.835 | 71.638 | 0.999 | 1.264 | 76.393 | 0.937 | |||||||||||||
BPZ | 17.499 | 30.241 | 0.869 | 2.35 | 77.172 | 0.904 | 1.273 | 84.65 | 0.978 | |||||||||||||
BPA | 2.889 | 90.767 | 0.856 | 0.425 | 98.88 | 0.937 | 0.394 | 99.621 | 0.777 | |||||||||||||
BPB | 10.876 | 31.117 | 0.956 | 0.333 | 74.943 | 0.947 | 0.172 | 75.479 | 0.774 | |||||||||||||
BPAP | 4.535 | 63.639 | 0.897 | 5.533 | 68.042 | 0.999 | 0.343 | 82.917 | 0.918 | |||||||||||||
BPM | 0.065 | 99.871 | 0.999 | 0.056 | 100.24 | 0.997 | 0.004 | 100.28 | 0.999 |
图11 (a)有无泡腾片剂、(b)洗脱剂种类、(c)洗脱剂体积和(d)洗脱时间对BPs萃取性能的影响(n=3)
Fig. 11 Effects of (a) with or without effervescent tablets, (b) type and (c) volume of elution solvent, and (d) elution time on the recoveries of the BPs (n=3)
Analyte | Linear range/ (μg/L) | Regression equation/(μg/L) | R2 | LOD/ (μg/L) | LOQ/ (μg/L) | Intra-day RSDs/%(n=6) | Inter-day RSDs/%(n=6) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Low | Medium | High | Low | Medium | High | |||||||
BPF | 0.66-500 | y=3.34×103x-2.64×102 | 0.9993 | 0.11 | 0.36 | 3.41 | 1.37 | 1.52 | 4.78 | 4.43 | 3.91 | |
BPZ | 0.60-500 | y=3.04×103x+4.95×104 | 0.9977 | 0.18 | 0.60 | 1.76 | 4.33 | 3.97 | 3.46 | 2.94 | 2.27 | |
BPA | 0.66-500 | y=3.32×103x+2.91×104 | 0.9966 | 0.20 | 0.66 | 2.57 | 4.76 | 2.79 | 3.53 | 2.79 | 1.98 | |
BPB | 0.63-500 | y=2.84×103x+5.93×104 | 0.9966 | 0.18 | 0.60 | 3.81 | 2.08 | 3.16 | 5.36 | 4.99 | 3.16 | |
BPAP | 1.00-500 | y=1.69×103x+7.05×104 | 0.9936 | 0.10 | 0.33 | 2.56 | 1.44 | 4.02 | 2.68 | 2.07 | 2.53 | |
BPM | 0.33-500 | y=7.59×103x+5.57×105 | 0.9950 | 0.06 | 0.20 | 2.04 | 3.39 | 1.99 | 1.69 | 3.85 | 2.91 |
表5 CoNi@NGC基泡腾辅助分散固相微萃取结合HPLC-FLD方法对BPs的检测性能
Table 5 Analytical performances of the CoNi@NGC in detecting the BPs using MSPE-HPLC-FLD method
Analyte | Linear range/ (μg/L) | Regression equation/(μg/L) | R2 | LOD/ (μg/L) | LOQ/ (μg/L) | Intra-day RSDs/%(n=6) | Inter-day RSDs/%(n=6) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Low | Medium | High | Low | Medium | High | |||||||
BPF | 0.66-500 | y=3.34×103x-2.64×102 | 0.9993 | 0.11 | 0.36 | 3.41 | 1.37 | 1.52 | 4.78 | 4.43 | 3.91 | |
BPZ | 0.60-500 | y=3.04×103x+4.95×104 | 0.9977 | 0.18 | 0.60 | 1.76 | 4.33 | 3.97 | 3.46 | 2.94 | 2.27 | |
BPA | 0.66-500 | y=3.32×103x+2.91×104 | 0.9966 | 0.20 | 0.66 | 2.57 | 4.76 | 2.79 | 3.53 | 2.79 | 1.98 | |
BPB | 0.63-500 | y=2.84×103x+5.93×104 | 0.9966 | 0.18 | 0.60 | 3.81 | 2.08 | 3.16 | 5.36 | 4.99 | 3.16 | |
BPAP | 1.00-500 | y=1.69×103x+7.05×104 | 0.9936 | 0.10 | 0.33 | 2.56 | 1.44 | 4.02 | 2.68 | 2.07 | 2.53 | |
BPM | 0.33-500 | y=7.59×103x+5.57×105 | 0.9950 | 0.06 | 0.20 | 2.04 | 3.39 | 1.99 | 1.69 | 3.85 | 2.91 |
图12 实际样品和加标样品的色谱图
Fig. 12 Chromatograms of real and spiked samples The detailed experimental conditions are summarized as follows: 150 mg of TTA and 106 mg of Na2CO3 as precursors of an effervescent tablet, 5 mg of CoNi@NGC as extractant, pH=7, 2.0 mL of acetone as eluent solution and 6 min elution time.
Sample | Added/ (μg/L) | Recoveries/% | |||||
---|---|---|---|---|---|---|---|
BPF | BPZ | BPA | BPB | BPAP | BPM | ||
Peach juice* | 5 | 94.6±2.1 | 93.4±3.8 | 86.2±4.3 | 92.3±2.7 | 90.0±1.9 | 83.7±3.2 |
20 | 87.2±4.3 | 94.7±2.2 | 88.7±3.5 | 98.±3.1 | 90.2±4.2 | 88.5±3.5 | |
200 | 92.3±3.7 | 96.5±2.9 | 95.2±2.7 | 86.3±2.0 | 85.9±4.0 | 86.4±2.7 | |
Pomelo tea | 5 | 84.8±2.5 | 89.1±3.3 | 92.4±4.4 | 92.0±3.6 | 87.7±3.2 | 87.9±1.9 |
20 | 103.1±4.7 | 87.5±4.6 | 93.3±2.9 | 87.8±2.5 | 88.9±1.7 | 86.1±2.4 | |
200 | 93.5±2.6 | 105.3±3.1 | 90.6±1.5 | 85.3±2.2 | 94.3±3.4 | 90.4±4.5 | |
Plum juice | 5 | 98.1±3.4 | 97.3±2.4 | 87.1±2.8 | 86.5±3.9 | 96.9±1.8 | 91.3±4.8 |
20 | 90.6±4.2 | 94.7±3.8 | 85.9±3.1 | 91.8±3.7 | 82.4±2.6 | 84.4±2.8 | |
200 | 91.7±2.4 | 84.2±2.9 | 99.2±4.2 | 101.2±2.0 | 92.3±4.6 | 96.0±3.7 | |
Orange juice | 5 | 85.8±1.7 | 82.7±1.5 | 87.4±2.9 | 94.5±2.1 | 92.6±3.9 | 90.4±3.4 |
20 | 92.4±3.9 | 99.3±4.8 | 85.1±1.0 | 87.3±4.5 | 88.9±4.1 | 99.6±2.6 | |
200 | 101.3±1.9 | 96.4±4.1 | 92.1±4.2 | 85.7±2.9 | 83.2±1.5 | 103.7±2.1 | |
Pear juice | 5 | 91.2±2.2 | 88.1±2.7 | 100.5±3.7 | 94.1±4.0 | 96.7±3.6 | 85.0±4.0 |
20 | 83.9±4.3 | 87.5±4.2 | 93.5±2.6 | 90.9±3.9 | 88.0±2.5 | 93.7±2.8 | |
200 | 99.2±1.4 | 93.3±3.6 | 94.8±1.7 | 98.2±2.1 | 87.3±1.4 | 96.1±1.6 | |
Lactobacilus | 5 | 85.3±2.0 | 89.0±1.2 | 94.6±2.9 | 96.5±4.4 | 94.8±3.9 | 88.2±2.5 |
20 | 88.4±1.2 | 90.8±2.5 | 93.9±3.1 | 98.1±2.8 | 93.1±3.6 | 85.2±3.6 | |
200 | 93.2±3.1 | 93.1±3.3 | 102.4±3.0 | 97.3±3.4 | 95.1±2.2 | 94.1±3.0 |
表6 6种BPs在果汁样品中的加标回收率(n=3)
Table 6 Spiked recoveries of the six BPs in real juice samples (n=3)
Sample | Added/ (μg/L) | Recoveries/% | |||||
---|---|---|---|---|---|---|---|
BPF | BPZ | BPA | BPB | BPAP | BPM | ||
Peach juice* | 5 | 94.6±2.1 | 93.4±3.8 | 86.2±4.3 | 92.3±2.7 | 90.0±1.9 | 83.7±3.2 |
20 | 87.2±4.3 | 94.7±2.2 | 88.7±3.5 | 98.±3.1 | 90.2±4.2 | 88.5±3.5 | |
200 | 92.3±3.7 | 96.5±2.9 | 95.2±2.7 | 86.3±2.0 | 85.9±4.0 | 86.4±2.7 | |
Pomelo tea | 5 | 84.8±2.5 | 89.1±3.3 | 92.4±4.4 | 92.0±3.6 | 87.7±3.2 | 87.9±1.9 |
20 | 103.1±4.7 | 87.5±4.6 | 93.3±2.9 | 87.8±2.5 | 88.9±1.7 | 86.1±2.4 | |
200 | 93.5±2.6 | 105.3±3.1 | 90.6±1.5 | 85.3±2.2 | 94.3±3.4 | 90.4±4.5 | |
Plum juice | 5 | 98.1±3.4 | 97.3±2.4 | 87.1±2.8 | 86.5±3.9 | 96.9±1.8 | 91.3±4.8 |
20 | 90.6±4.2 | 94.7±3.8 | 85.9±3.1 | 91.8±3.7 | 82.4±2.6 | 84.4±2.8 | |
200 | 91.7±2.4 | 84.2±2.9 | 99.2±4.2 | 101.2±2.0 | 92.3±4.6 | 96.0±3.7 | |
Orange juice | 5 | 85.8±1.7 | 82.7±1.5 | 87.4±2.9 | 94.5±2.1 | 92.6±3.9 | 90.4±3.4 |
20 | 92.4±3.9 | 99.3±4.8 | 85.1±1.0 | 87.3±4.5 | 88.9±4.1 | 99.6±2.6 | |
200 | 101.3±1.9 | 96.4±4.1 | 92.1±4.2 | 85.7±2.9 | 83.2±1.5 | 103.7±2.1 | |
Pear juice | 5 | 91.2±2.2 | 88.1±2.7 | 100.5±3.7 | 94.1±4.0 | 96.7±3.6 | 85.0±4.0 |
20 | 83.9±4.3 | 87.5±4.2 | 93.5±2.6 | 90.9±3.9 | 88.0±2.5 | 93.7±2.8 | |
200 | 99.2±1.4 | 93.3±3.6 | 94.8±1.7 | 98.2±2.1 | 87.3±1.4 | 96.1±1.6 | |
Lactobacilus | 5 | 85.3±2.0 | 89.0±1.2 | 94.6±2.9 | 96.5±4.4 | 94.8±3.9 | 88.2±2.5 |
20 | 88.4±1.2 | 90.8±2.5 | 93.9±3.1 | 98.1±2.8 | 93.1±3.6 | 85.2±3.6 | |
200 | 93.2±3.1 | 93.1±3.3 | 102.4±3.0 | 97.3±3.4 | 95.1±2.2 | 94.1±3.0 |
|
[1] | 秦童童, 高莉, 赵文杰. 超交联多孔有机聚合物在柱固相萃取中的应用进展[J]. 色谱, 2023, 41(7): 554-561. |
[2] | 王秋旭, 冯启言, 朱雪强. 加速溶剂萃取-固相萃取净化结合超高效液相色谱-串联质谱法测定沉积物中双酚类化合物[J]. 色谱, 2023, 41(7): 582-590. |
[3] | 孙佳林, 牛宇敏, 高群, 张晶, 邵兵. 超高效液相色谱-串联质谱法测定灰尘中26种双酚类化合物[J]. 色谱, 2023, 41(5): 417-425. |
[4] | 余涛, 陈立, 张文敏, 张兰, 卢巧梅. 微孔有机网络材料的合成方法及其在样品前处理中的应用进展[J]. 色谱, 2023, 41(12): 1052-1061. |
[5] | 李慧, 任耿標, 李慧娟, 陈相峰, 张志国, 赵燕芳. 亚胺连接的多孔共价有机骨架材料结合固相萃取-液相色谱-串联质谱检测蜂蜜中雌激素[J]. 色谱, 2022, 40(8): 704-711. |
[6] | 郭炳志, 杨振, 孙亚明, 何丽君. 磺酸功能化聚合离子液体基磁性吸附剂的制备及对敌草快的萃取[J]. 色谱, 2022, 40(10): 921-928. |
[7] | 谭学蓉, 赵斌, 陆建伟, 刘少颖, 苟薇妮, 杨容, 佐鹏. 改进的QuEChERS结合超高效液相色谱-串联质谱法快速测定地表水中双酚类物质[J]. 色谱, 2022, 40(1): 57-65. |
[8] | 刘洪媛, 金静, 郭崔崔, 陈吉平, 胡春. 环境样品中双酚类化合物的固相萃取研究进展[J]. 色谱, 2021, 39(8): 835-844. |
[9] | 廖颖敏, 黄晓佳, 王卓卓, 甘蕊. 基于碳基磁性材料的磁固相萃取技术在食品分析应用中的研究进展[J]. 色谱, 2021, 39(4): 368-375. |
[10] | 王麟, 王龙星, 倪余文, 张海军, 陈吉平. 11种吸附剂上二噁英的热吸附/脱附性能评价[J]. 色谱, 2021, 39(4): 437-443. |
[11] | 魏佳楠, 秦墨林, 杨俊超, 杨柳. 填充吸附剂微萃取技术及其在微小体积样品萃取应用中的研究进展[J]. 色谱, 2021, 39(3): 219-228. |
[12] | 支明玉, 何艺, 郭丹丹, 朱岩. 树状大分子接枝型聚合物色谱分离材料研究进展[J]. 色谱, 2020, 38(4): 366-371. |
[13] | 韩丽珍, 杨艺欣, 张婧, 郭敬功, 卢明华. 石墨相氮化碳材料在样品前处理中的研究进展[J]. 色谱, 2020, 38(1): 28-35. |
[14] | 韩疏影, 宋易霖, 康安, 邓海山, 朱栋, 池玉梅. 在线富集与高效液相色谱-荧光检测法联用同时检测儿童水杯中9种双酚类物质[J]. 色谱, 2019, 37(11): 1185-1192. |
[15] | 孙佳佳, 章飞芳, 梁鑫淼. 螺旋霉素分子印迹磁性纳米吸附剂的合成及应用[J]. 色谱, 2018, 36(8): 723-729. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||