色谱 ›› 2023, Vol. 41 ›› Issue (2): 107-121.DOI: 10.3724/SP.J.1123.2022.07020
收稿日期:
2022-07-23
出版日期:
2023-02-08
发布日期:
2023-02-01
通讯作者:
张真庆
作者简介:
第一联系人:# 共同第一作者.
基金资助:
OUYANG Yilan,#, YI Lin,#, QIU Luyun, ZHANG Zhenqing()
Received:
2022-07-23
Online:
2023-02-08
Published:
2023-02-01
Contact:
ZHANG Zhenqing
Supported by:
摘要:
肝素(heparin, Hp)是目前临床应用最为广泛的抗凝剂,是由重复二糖单元组成的多硫酸化酸性直链多糖。低分子量肝素(LMWHs)是以肝素为原料,经过化学或酶降解获得的相对分子质量相对较小的肝素衍生物,相对肝素,它们的出血副作用和免疫原性更小,皮下注射时生物利用度更高。肝素及低分子量肝素具有一系列结构特点,如相对分子质量偏大且有一定分布,多种糖残基同时存在,硫酸酯位置和数量呈现多样化,以及不同工艺产生的特殊残基的种类和含量不一等。该类药物结构的复杂性对分析方法提出了巨大的挑战,也限制了其质量控制提升、工艺优化、临床用药安全和新适应证拓展等。该文以色谱分析方法为中心,从结构分析的不同角度,包括单糖、二糖、寡糖、多糖的识别、组成分析和不同层次,系统地梳理和阐述近年来肝素类药物在色谱分析方法上的进展,并对这些方法的应用范畴、创新性、局限性等进行总结。该文将为肝素类药物的结构分析、质量控制提供较系统的方法学参考,为更多新方法开发提供思路,为更深入地研究肝素类药物结构、拓展其应用提供有力支撑。
中图分类号:
欧阳艺兰, 易琳, 邱露允, 张真庆. 色谱技术在肝素结构分析中的研究进展[J]. 色谱, 2023, 41(2): 107-121.
OUYANG Yilan, YI Lin, QIU Luyun, ZHANG Zhenqing. Advances in heparin structural analysis by chromatography technologies[J]. Chinese Journal of Chromatography, 2023, 41(2): 107-121.
No. | Derivatization reagent | Method | Parameters | Analytes | Ref. | Published year |
---|---|---|---|---|---|---|
1 | PMP | RPLC-UV | LOD:0.04-1.6 μmol/L;LOQ:0.15-1.6 μmol/L;mass recovery:92%-100%;RSD:0.3% | 10 sugars | [ | 2016 |
2 | PMP | RPLC-MS(MRM) | LOD:0.056-5.6 fmol/L;LOQ:0.5-10 ng/mL;RSD:6.0% | 16 sugars | [ | 2017 |
3 | 2-AB and 2-AP | RPLC-UV | LOD:1.2-11 nmol/L;LOQ:4-36 nmol/L;repeatability:2%-9%;inter-day repeatability:3%-9% | 10 sugars | [ | 2021 |
4 | d3-4-MOBHA·HCl | RPLC-MS(MRM) | LOD:1.2-11 nmol/L;LOQ:0.25-3 fmol/L;mass recovery: 85%-110% | 12 sugars | [ | 2021 |
5 | no | IC | LOD:1.0 ng;LOQ:2.5 ng | 16 sugars | [ | 2012 |
表1 单糖组成分析方法
Table 1 Monosaccharide composition analysis methods
No. | Derivatization reagent | Method | Parameters | Analytes | Ref. | Published year |
---|---|---|---|---|---|---|
1 | PMP | RPLC-UV | LOD:0.04-1.6 μmol/L;LOQ:0.15-1.6 μmol/L;mass recovery:92%-100%;RSD:0.3% | 10 sugars | [ | 2016 |
2 | PMP | RPLC-MS(MRM) | LOD:0.056-5.6 fmol/L;LOQ:0.5-10 ng/mL;RSD:6.0% | 16 sugars | [ | 2017 |
3 | 2-AB and 2-AP | RPLC-UV | LOD:1.2-11 nmol/L;LOQ:4-36 nmol/L;repeatability:2%-9%;inter-day repeatability:3%-9% | 10 sugars | [ | 2021 |
4 | d3-4-MOBHA·HCl | RPLC-MS(MRM) | LOD:1.2-11 nmol/L;LOQ:0.25-3 fmol/L;mass recovery: 85%-110% | 12 sugars | [ | 2021 |
5 | no | IC | LOD:1.0 ng;LOQ:2.5 ng | 16 sugars | [ | 2012 |
图3 强阴离子交换色谱法定量分析肝素彻底酶解产物[63,65]
Fig. 3 Analysis of heparin depolymerized by heparinase mixture by strong anion exchange chromatography (SAX)[63,65] a. chromatogram of SAX-UV, black line: 232 nm, red line: 202-242 nm[63]; b. schematic of multiple heart-cutting two dimensional chromatography with MS (MHC 2D-LC-MS) system[65]; c. chromatograms of MHC 2D-LC-MS (1D-SAX, 232 nm)[65].
图4 微流反相离子对色谱-质谱法(Mf-IPRP-MS)对8个肝素二糖的定量分析结果[67]
Fig. 4 Results of quantitative analysis of eight heparin disaccharides by microflow ion pair reversed phase coupled with MS (IPRP-MS) method[67]
No. | Composition | SAX- UVHep[ | SAX- SECHep[ | SAX- SECEno[ | SAX- SECNadro[ | IPRP- MSEno[ | HILIC- MSNadro[ | HILIC- MSEno[ | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | ΔU-GlcNAc | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
2 | ΔU-GlcNS | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
3 | ΔU-GlcNAc,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
4 | ΔU2S-GlcNAc | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
5 | ΔU-GlcNS,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
6 | ΔU2S-GlcNS | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
7 | ΔU2S-GlcNAc,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
8 | ΔU2S-GlcNS,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
9 | ΔGalA-GlcNS | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
10 | ΔGalA-GlcNS,6S | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
12 | IdoA2S-GlcNS | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
13 | U2S-GlcNS or U-GlcNS,6S | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ||
14 | U2S-GlcNAc or U-GlcNAc,6S | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
15 | IdoA2S-GlcNS,6S | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
16 | ΔU2S-GlcN,6S | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
17 | ΔU2S-GlcN | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
18 | ΔU-GlcN,6S | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
19 | ΔU-GlcN | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
20 | ΔGlyser | 1 | 1 | 1 | 1 | 0 | 1 | 1 | ||
No. | Composition | SAX- UVHep[ | SAX- SECHep[ | SAX- SECEno[ | SAX- SECNadro[ | IPRP- MSEno[ | HILIC- MSNadro[ | HILIC- MSEno[ | ||
21 | ΔGlyserox1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
22 | ΔGlyserox2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
23 | Other non-endogenous derivatives ΔISO3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
24 | Tetrasaccharide A ΔIS-I2SO3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
25 | Tetrasaccharide B ΔI2SO3-Isid | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
26 | ΔU-GlcNAc,6S-GlcA-GlcNS,3S | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
27 | ΔU-GlcNAc,6S-GlcA-GlcNS,3S,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
28 | ΔU-GlcNS,6S-GlcA-GlcNS,3S,6S | 1 | 1 | 1 | 0 | 0 | 1 | 1 | ||
29 | ΔU2S-GlcNAc,6S-GlcA-GlcNS,3S,6S | 1 | 0 | 0 | 0 | 0 | 1 | 0 | ||
30 | ΔU2S-GlcNS,6S-GlcA-GlcNS,3S,6S | 1 | 0 | 0 | 0 | 0 | 1 | 0 | ||
31 | GlcNS-IdoA2S-GlcNS,6S or GlcNS, | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ||
6S-IdoA2S-GlcNS | ||||||||||
32 | GlcNS,6S-IdoA2S-GlcNS,6S | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
33 | ΔU-GlcNS,6S-HexA | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
34 | ΔU2S-GlcNAc,6S-HexA | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
35 | ΔU2S-GlcNS,6S-HexA | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
36 | ΔU2S-GlcNS,6S-HexA2S | 0 | 0 | 1 | 0 | 0 | 1 | 1 | ||
37 | ΔU2CS-GlcNS,6S | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
38 | GlcNS,6S-U2CS-GlcNS or GlcNS-U2CS-GlcNS,6S | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
39 | ΔUA2S-GlcNS,6S-GlcA-2,3-anhydro-GlcNS | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
40 | ΔUA-GlcNS-HexA2S,3S-GlcNS | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
41 | 3-O-S Δdp2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ||
42 | 3-O-S Δdp4(3S,1Ac) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ||
43 | 3-O-S Δdp4(4S,0Ac) | 0 | 1 | 1 | 0 | 0 | 1 | 0 | ||
44 | 3-O-S Δdp4(4S,1Ac) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | ||
45 | 3-O-S Δdp4(5S,0Ac) | 0 | 3 | 0 | 0 | 0 | 0 | 0 | ||
46 | ΔU- Mnt6S | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||
47 | ΔU2S- Mnt6S | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||
48 | GlcNS,6S-U2S-Mnt6S | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
49 | ΔU2S-GlcNS-U-Mnt6S | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ||
50 | ΔU2S-GlcNAc-U2S-Mnt6S | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
51 | ΔU2S-GlcNS-U2S-Mnt6S | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||
52 | ΔU2S-GlcNS,6S-U2S-Mnt6S | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||
53 | MntΔdp5(5S,1Ac) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
54 | MntΔdp6(6S,1Ac) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
55 | ΔU-1,6-anhydroGlcNS | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
56 | ΔU-1,6-anhydroManNS | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
57 | ΔU2S-1,6-anhydroHexNS | 0 | 0 | 0 | 0 | 2 | 0 | 1 | ||
58 | GlcNS,6S-U2S-1,6-anhydroHexNS | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ||
59 | ΔU2S-GlcNS,6S-U2S-1,6-anhydroManNS | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
表2 不同分析方法获得的肝素或低分子量肝素的二糖组成
Table 2 Composition of disaccharide analysis from heparin or low molecular weight heparins(LMWHs)by various methods
No. | Composition | SAX- UVHep[ | SAX- SECHep[ | SAX- SECEno[ | SAX- SECNadro[ | IPRP- MSEno[ | HILIC- MSNadro[ | HILIC- MSEno[ | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | ΔU-GlcNAc | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
2 | ΔU-GlcNS | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
3 | ΔU-GlcNAc,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
4 | ΔU2S-GlcNAc | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
5 | ΔU-GlcNS,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
6 | ΔU2S-GlcNS | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
7 | ΔU2S-GlcNAc,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
8 | ΔU2S-GlcNS,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
9 | ΔGalA-GlcNS | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
10 | ΔGalA-GlcNS,6S | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
12 | IdoA2S-GlcNS | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
13 | U2S-GlcNS or U-GlcNS,6S | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ||
14 | U2S-GlcNAc or U-GlcNAc,6S | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
15 | IdoA2S-GlcNS,6S | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
16 | ΔU2S-GlcN,6S | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
17 | ΔU2S-GlcN | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
18 | ΔU-GlcN,6S | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
19 | ΔU-GlcN | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
20 | ΔGlyser | 1 | 1 | 1 | 1 | 0 | 1 | 1 | ||
No. | Composition | SAX- UVHep[ | SAX- SECHep[ | SAX- SECEno[ | SAX- SECNadro[ | IPRP- MSEno[ | HILIC- MSNadro[ | HILIC- MSEno[ | ||
21 | ΔGlyserox1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
22 | ΔGlyserox2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
23 | Other non-endogenous derivatives ΔISO3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
24 | Tetrasaccharide A ΔIS-I2SO3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
25 | Tetrasaccharide B ΔI2SO3-Isid | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
26 | ΔU-GlcNAc,6S-GlcA-GlcNS,3S | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
27 | ΔU-GlcNAc,6S-GlcA-GlcNS,3S,6S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
28 | ΔU-GlcNS,6S-GlcA-GlcNS,3S,6S | 1 | 1 | 1 | 0 | 0 | 1 | 1 | ||
29 | ΔU2S-GlcNAc,6S-GlcA-GlcNS,3S,6S | 1 | 0 | 0 | 0 | 0 | 1 | 0 | ||
30 | ΔU2S-GlcNS,6S-GlcA-GlcNS,3S,6S | 1 | 0 | 0 | 0 | 0 | 1 | 0 | ||
31 | GlcNS-IdoA2S-GlcNS,6S or GlcNS, | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ||
6S-IdoA2S-GlcNS | ||||||||||
32 | GlcNS,6S-IdoA2S-GlcNS,6S | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
33 | ΔU-GlcNS,6S-HexA | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
34 | ΔU2S-GlcNAc,6S-HexA | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
35 | ΔU2S-GlcNS,6S-HexA | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
36 | ΔU2S-GlcNS,6S-HexA2S | 0 | 0 | 1 | 0 | 0 | 1 | 1 | ||
37 | ΔU2CS-GlcNS,6S | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
38 | GlcNS,6S-U2CS-GlcNS or GlcNS-U2CS-GlcNS,6S | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
39 | ΔUA2S-GlcNS,6S-GlcA-2,3-anhydro-GlcNS | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
40 | ΔUA-GlcNS-HexA2S,3S-GlcNS | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
41 | 3-O-S Δdp2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ||
42 | 3-O-S Δdp4(3S,1Ac) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ||
43 | 3-O-S Δdp4(4S,0Ac) | 0 | 1 | 1 | 0 | 0 | 1 | 0 | ||
44 | 3-O-S Δdp4(4S,1Ac) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | ||
45 | 3-O-S Δdp4(5S,0Ac) | 0 | 3 | 0 | 0 | 0 | 0 | 0 | ||
46 | ΔU- Mnt6S | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||
47 | ΔU2S- Mnt6S | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||
48 | GlcNS,6S-U2S-Mnt6S | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
49 | ΔU2S-GlcNS-U-Mnt6S | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ||
50 | ΔU2S-GlcNAc-U2S-Mnt6S | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
51 | ΔU2S-GlcNS-U2S-Mnt6S | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||
52 | ΔU2S-GlcNS,6S-U2S-Mnt6S | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||
53 | MntΔdp5(5S,1Ac) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
54 | MntΔdp6(6S,1Ac) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
55 | ΔU-1,6-anhydroGlcNS | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
56 | ΔU-1,6-anhydroManNS | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
57 | ΔU2S-1,6-anhydroHexNS | 0 | 0 | 0 | 0 | 2 | 0 | 1 | ||
58 | GlcNS,6S-U2S-1,6-anhydroHexNS | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ||
59 | ΔU2S-GlcNS,6S-U2S-1,6-anhydroManNS | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
图5 CE-UV法定量分析依诺肝素酶解产物[75,77]
Fig. 5 Analysis of the exhaustively digestion of enoxaparin by CE-UV[75,77] a. chromatogram of 232 nm[75]; b. schematic of capillary isoelectric focusing coupled with mass spectrometry (cIEF-MS) system[77].
图6 LMWHs的寡糖分析[68,85,86]
Fig. 6 Oligosaccharide analysis of LMWHs[68,85,86] a. total ion chromatogram of LMWH (tinzaparin) by IPRP-MS[68]; b. total ion chromatogram of LMWH (enoxaparin) by HILIC-MS[85]; c. UV chromatogram (232 nm) of LMWH (enoxaparin) by SEC-MS[86].
图7 MHC 2D-LC-MS分析依诺肝素的寡糖图谱分析[93]
Fig. 7 Profiling analysis of enoxaparin using MHC 2D-LC-MS[93] a.1D chromatogram of enoxaparin and the cutting position of each dp from 3 to 12; b.2D extracted compound chromatograms for dp3 to dp12.
|
[1] | 刘威, 翁凌霄, 高明霞, 张祥民. 高效液相色谱-质谱技术在蛋白质组学中的应用[J]. 色谱, 2024, 42(7): 601-612. |
[2] | 梁富超, 柯弥, 田瑞军. 应用于原代T细胞酪氨酸磷酸化蛋白质组的高灵敏度分析方法[J]. 色谱, 2024, 42(7): 693-701. |
[3] | 郑义, 曹翠岩, 郭志谋, 闫竞宇, 梁鑫淼. 色谱在糖组学分析中的应用[J]. 色谱, 2024, 42(7): 646-657. |
[4] | 何宇, 单亦初, 张丽华, 张振宾, 李洋. 一种基于疏水基团标记和反相色谱分离的富集策略及其在含赖氨酸多肽分析中的应用[J]. 色谱, 2024, 42(7): 721-729. |
[5] | 江波, 高博, 魏淑娴, 梁振, 张丽华, 张玉奎. 蛋白质N-磷酸化修饰富集方法进展[J]. 色谱, 2024, 42(7): 623-631. |
[6] | 薛洁滢, 刘哲益, 王方军. 非变性质谱和紫外激光解离在蛋白质结构和相互作用分析中的应用[J]. 色谱, 2024, 42(7): 681-692. |
[7] | 陈欣, 钱文平, 陈天奇, 邵凌云, 张文芬, 张书胜. 含氟富氮多孔有机聚合物的合成及其对水中全氟辛酸的去除[J]. 色谱, 2024, 42(6): 572-580. |
[8] | 谢宝轩, 吕洋, 刘震. 用于复杂生物样品体系分离与识别的分子印迹技术最新进展[J]. 色谱, 2024, 42(6): 508-523. |
[9] | 郑德圣, 汤雯淇, 朱建平, 古志远. 基于二维材料的色谱固定相制备及应用[J]. 色谱, 2024, 42(6): 524-532. |
[10] | 王紫颖, 施海蔚, 马聪玉, 柳文媛, 陈蕾, 刘真, 袁耀佐, 张玫, 唐盛. 超临界流体-蒸发光散射法测定常见油脂类药用辅料皂化后的脂肪酸组成及其在油脂鉴别中的应用[J]. 色谱, 2024, 42(6): 581-589. |
[11] | 陈建, 徐坤, 高涵, 赵睿, 黄嫣嫣. 多肽功能化亲和微球的制备与线粒体高选择性分离分析[J]. 色谱, 2024, 42(6): 555-563. |
[12] | 刘家玮, 唐长伟, 夏一然, 白泉. 色谱技术在抗体分离纯化中的应用进展[J]. 色谱, 2024, 42(6): 533-543. |
[13] | 康晶燕, 师彦平. 基于超分子衍生类多孔有机聚合物的样品前处理方法研究进展[J]. 色谱, 2024, 42(6): 496-507. |
[14] | 白立改, 刘玢, 乔晓强. 科研成果转化为教学资源对提升教学效果的作用:以药物分析学课程中色谱方法的教学为例[J]. 色谱, 2024, 42(5): 487-493. |
[15] | 张丹丹, 朱爽, 侯畅, 蔡丹旎, 修光利, 栾绍嵘. 离子色谱法同时检测大气颗粒物PM2.5中低级脂肪胺和常规阳离子[J]. 色谱, 2024, 42(5): 458-464. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||