色谱 ›› 2023, Vol. 41 ›› Issue (7): 582-590.DOI: 10.3724/SP.J.1123.2022.12015

• 研究论文 • 上一篇    下一篇

加速溶剂萃取-固相萃取净化结合超高效液相色谱-串联质谱法测定沉积物中双酚类化合物

王秋旭, 冯启言, 朱雪强*()   

  1. 中国矿业大学环境与测绘学院,江苏 徐州 221116
  • 收稿日期:2022-12-22 出版日期:2023-07-08 发布日期:2023-06-30
  • 通讯作者: *E-mail:zhuxq0615@163.com.
  • 基金资助:
    江苏省环保科研课题(2018002)

Determination of bisphenols in sediment by accelerated solvent extraction and solid-phase extraction purification coupled with ultra performance liquid chromatography-tandem mass spectrometry

WANG Qiuxu, FENG Qiyan, ZHU Xueqiang*()   

  1. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
  • Received:2022-12-22 Online:2023-07-08 Published:2023-06-30
  • Supported by:
    Environmental Protection Research Project of Jiangsu Province(2018002)

摘要:

双酚类化合物(bisphenols)属于内分泌干扰物,具有生物累积性、持久性和雌激素活性,较低含量的双酚类化合物即会对人体健康和生态环境产生不利影响。为了准确检测沉积物中的双酚类化合物,本工作建立了加速溶剂萃取-固相萃取净化结合超高效液相色谱-串联质谱检测沉积物中双酚A(BPA)、双酚B(BPB)、双酚F(BPF)、双酚S(BPS)、双酚Z(BPZ)、双酚AF(BPAF)、双酚AP(BPAP)7种双酚类化合物的方法。优化了7种双酚类化合物的质谱参数,比较了在3组不同流动相条件下,7种双酚类化合物的响应值、分离效果和色谱峰形状。沉积物样品使用加速溶剂萃取方法进行前处理,采用正交试验优化了萃取溶剂、萃取温度和循环次数。实验结果表明,采用Acquity UPLC BEH C18色谱柱(100 mm×2.1 mm, 1.7 μm),以0.05%(v/v)氨水和乙腈为流动相进行梯度洗脱,可以实现7种双酚类化合物的快速分离;经正交试验优化后的萃取条件如下:萃取溶剂为乙腈,萃取温度为100 ℃,循环次数为3次。7种双酚类化合物在1.0~200 μg/L内线性关系良好(相关系数(r2)均大于0.999),检出限为0.01~0.3 ng/g。在3个加标水平(2.0、10、20 ng/g)下,7种双酚类化合物的回收率为74.9%~102.8%,相对标准偏差为6.2%~10.3%(n=3)。应用该方法分析了骆马湖湖区及其入湖河流沉积物中7种双酚类化合物的含量,结果表明:在骆马湖湖区沉积物中检测出BPA、BPB、BPF、BPS、BPAF,入湖河流沉积物中检测出BPA、BPF、BPS;其中BPA、BPF的检出率为100%,沉积物中BPA、BPF的含量分别为11.9~38.0 ng/g和11.0~27.3 ng/g。该方法简便、快速,准确度和精密度较高,适用于沉积物中7种双酚类化合物的检测。

关键词: 加速溶剂萃取, 固相萃取, 超高效液相色谱-串联质谱, 双酚类化合物, 沉积物, 正交试验

Abstract:

Bisphenols are endocrine disruptors that are characterized with bioaccumulation, persistence, and estrogenic activity. Even low contents of bisphenols can exert adverse effects on human health and the ecological environment. Herein, a method combining accelerated solvent extraction and solid-phase extraction purification with ultra performance liquid chromatography-tandem mass spectrometry was developed for the accurate detection of bisphenol A (BPA), bisphenol B (BPB), bisphenol F (BPF), bisphenol S (BPS), bisphenol Z (BPZ), bisphenol AF (BPAF), and bisphenol AP (BPAP) in sediments. The mass spectrometric parameters of the seven bisphenols were optimized, and the response values, separation effects, and chromatographic peak shapes of the target compounds were compared under three different mobile phase conditions. The sediment samples were pretreated by accelerated solvent extraction, and orthogonal tests were used to optimize the extraction solvent, extraction temperature, and cycle number. The results showed that the use of 0.05% (v/v) ammonia and acetonitrile as the mobile phase for gradient elution could rapidly separate the seven bisphenols on an Acquity UPLC BEH C18 column (100 mm×2.1 mm, 1.7 μm). The gradient program was as follows: 0-2 min, 60%A; 2-6 min, 60%A-40%A; 6-6.5 min, 40%A; 6.5-7 min, 40%A-60%A; 7-8 min, 60%A. Orthogonal experiments indicated that the optimal extraction conditions were as follows: extraction solvent of acetonitrile, extraction temperature of 100 ℃, and cycle number of three. The seven bisphenols showed good linearity in the range of 1.0-200 μg/L, with correlation coefficients (r2) greater than 0.999, and the limits of detection were 0.01-0.3 ng/g. The recoveries for the seven bisphenols ranged from 74.9% to 102.8% at three spiking levels (2.0, 10, 20 ng/g), with relative standard deviations ranging from 6.2% to 10.3%. The established method was applied to detect the seven bisphenols in sediment samples collected from Luoma Lake and its inflow rivers. BPA, BPB, BPF, BPS, and BPAF were detected in the sediments of the lake, and BPA, BPF, and BPS were detected in the sediments of its inflow rivers. The detection frequency of BPA and BPF was 100%, and the contents of these bisphenols in the sediment were 11.9-38.0 ng/g and 11.0-27.3 ng/g, respectively. The developed method is simple, rapid with high accuracy and precision, and is suitable for the determination of the seven bisphenols in sediment.

Key words: accelerated solvent extraction (ASE), solid-phase extraction (SPE), ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), bisphenols, sediment, orthogonal test

中图分类号: