色谱 ›› 2023, Vol. 41 ›› Issue (9): 742-751.DOI: 10.3724/SP.J.1123.2023.06008
赵孟乾1,2, 刘海涛1, 张旭1, 甘忠桥1,2, 秦建华1,2,*()
收稿日期:
2023-06-26
出版日期:
2023-09-08
发布日期:
2023-09-15
通讯作者:
*Tel:(0411)84379650,E-mail:jhqin@dicp.ac.cn.
基金资助:
ZHAO Mengqian1,2, LIU Haitao1, ZHANG Xu1, GAN Zhongqiao1,2, QIN Jianhua1,2,*()
Received:
2023-06-26
Online:
2023-09-08
Published:
2023-09-15
Supported by:
摘要:
水凝胶微丝是一种在生物医学领域备受关注的支架材料,具有良好的生物相容性、可调的力学性能和较大的比表面积。然而,在绿色环境下制备高细胞负载能力和多组分载荷的异质微丝仍然面临挑战。为了克服这一问题,本研究建立了一种基于气动泵阀辅助的全水相微流控系统,该系统能够实现具有球丝异质形态和先进功能的水凝胶微载体的一步制备。在这个系统中,利用右旋糖酐和聚乙二醇两相的自发相分离,形成液滴,并利用海藻酸钠和氯化钙的离子交联固化,形成水凝胶。通过调整内相、中间相和外相的流速,可以灵活控制液滴的大小、液滴之间的间距和微丝的宽度。得到的水凝胶微丝具有等距离排列的液滴,呈现出球丝异质的形态。进一步的实验结果表明,这种水凝胶微丝载体可以用于高通量原位生成三维细胞球。生成的细胞球表现出良好的细胞存活率和药物测试功能。这说明该载体在细胞培养方面具有潜在的应用前景。该全水相微流控系统具有高效、精确和可控的特点,为水凝胶微丝的制备提供了新的方法。这一技术的开发为进一步开展生物医学研究和应用提供了有力支持,也为制备用于材料科学、组织工程和药物测试的多功能水凝胶微丝提供了新途径。
中图分类号:
赵孟乾, 刘海涛, 张旭, 甘忠桥, 秦建华. 全水相微流控系统一步制备球丝异质载体用作细胞三维培养[J]. 色谱, 2023, 41(9): 742-751.
ZHAO Mengqian, LIU Haitao, ZHANG Xu, GAN Zhongqiao, QIN Jianhua. One-step generation of droplet-filled hydrogel microfibers for 3D cell culture using an all-aqueous microfluidic system[J]. Chinese Journal of Chromatography, 2023, 41(9): 742-751.
图 1 用于全水球丝水凝胶微丝制备的微流控系统示意图
Fig. 1 Schematic diagrams of the microfluidic system for generating all-aqueous droplet-filled hydrogel microfibers a. configuration of the microfluidic chip: the injection unit, the droplet generation unit, fiber generation unit, the collection unit and the procedure of the pneumatic valve for the generation of droplet. Dextran (DEX), poly(ethylene glycol) (PEG) with alginate (NaA), and PEG with calcium chloride (CaCl2) were introduced to the system through inner-phase, middle-phase, and outer-phase inlets, respectively. b. procedures for droplet and fiber generation. c. schematic illustration of the reaction of NaA and CaCl2 within the microfibers.
图 2 全水球丝制备以及形貌表征
Fig. 2 Generation and morphological characterization of the all-aqueous droplet-filled hydrogel microfibers a. bright-field image of the flows in the droplet generation unit and fiber generation unit; b. macroscopic (i), microscopic (ii), and schematic (iii) images of the all-aqueous droplet-filled hydrogel microfibers; c. fluorescence and bright-field images of fluorescein isothiocyanate-labeled sodium alginate (FITC-labeled NaA) collected in the all-aqueous droplet-filled hydrogel microfibers; d. SEM images of the (i and ii) side and (iii) cross-sectional views of the freeze-dried microfibers. The valve cycle was fixed to 0.4 s, and the inner-phase, middle-phase, and outer-phase flow rates were set to 0.6, 5.5, and 300 μL/min, respectively, for all collected fibers shown in the figure.
图 3 海藻酸盐微丝中不同形状的液滴包封分布图及表征图
Fig. 3 Characterization and distribution maps of different-shaped droplets encapsulated in the alginate microfibers a. morphology of different types of droplet-filled and hollow fibers; b. distribution of fiber morphologies formed at different inner-phase and middle-phase flow rates.
图 4 不同(a)内相、(b)中间相和(c)外相流速下球丝异质载体的明场图和对液滴直径、液滴间距和微丝宽度的统计图
Fig. 4 Bright-field images of droplet-filled hydrogel microfibers and statistical diagrams of the droplet diameter, droplet distance, and microfiber width under the different (a) inner-phase, (b) middle-phase, (c) outer-phase flow rates **p<0.01; ***p<0.001. Quantitative analyses of the droplet diameter, droplet distance, and microfiber width were performed on at least 20 samples.
图 5 全水球丝中负载和形成3D细胞球
Fig. 5 Encapsulation and formation of 3D cell spheroids in the all-aqueous droplet-filled hydrogel microfibers a. schematic diagram of the encapsulation of tumor cells in the all-aqueous droplet-filled hydrogel microfibers and formation of 3D cell spheroids; b. bright-field image of continuous fibers loaded with multiple tumor spheroids; c. bright-field images of tumor spheroids in the droplets 1, 3, 5, and 7 d after loading and the corresponding statistical analysis of the tumor spheroid diameter (n=3); d. fluorescence images of the live/dead staining experiment and fluorescence quantitative analysis to assess the viability of cells within the tumor spheroids 1, 3, 5, and 7 d after loading (n=3).
图 6 A549细胞球药物测试表征
Fig. 6 Characterization of the drug response of A549 cells in the spheroids a. bright-field and fluorescence images of the live/dead staining of A549 cells in 2D cultures treated with different concentrations of cisplatin (0.1-1000 μmol/L) for 24 h; b. the corresponding dose-response curve and IC50 value of cisplatin in A549 cells cultured in 2D plate (n=3); c. bright-field and fluorescence images of the live/dead staining of A549 tumor spheroids in all-aqueous droplet-filled hydrogel microfibers treated with different concentrations of cisplatin (0.1-1000 μmol/L) for 24 h; d. the corresponding dose-response curve and IC50 value of cisplatin in A549 cells cultured in the all-aqueous droplet-filled hydrogel microfibers (n=3).
|
[1] | 吴丽娟, 杨丽莉, 胡恩宇, 王美飞, 杨超, 尹明明. 气相色谱-质谱法测定土壤中14种苯胺类和联苯胺类化合物[J]. 色谱, 2023, 41(12): 1127-1134. |
[2] | 米琨, 章文天, 闻路红, 王进. 脉冲直流电喷雾质谱法快速检测毛发中4种苯丙胺类药物[J]. 色谱, 2023, 41(12): 1141-1148. |
[3] | 杨占强, 张芳芳, 韩春霞, 郑洪国. 非抑制型离子色谱法同时测定矿泉水中硼酸和偏硅酸[J]. 色谱, 2023, 41(12): 1121-1126. |
[4] | 童新, 金洋, 金晶, 刘萍, 吴春艳, 童胜强. 离线全二维逆流色谱-液相色谱分离莪术油成分[J]. 色谱, 2023, 41(12): 1115-1120. |
[5] | 董洁琼, 肖琎, 周鑫, 李宁, 王雪松, 康俊杰. 超高效液相色谱-串联质谱测定畜肉中14种β-受体激动剂[J]. 色谱, 2023, 41(12): 1106-1114. |
[6] | 王献礼, 饶钦雄, 张其才, 杜鹏辉, 宋卫国. 快速滤过型净化结合超高效液相色谱-串联质谱法测定中华绒螯蟹中14种全氟烷基化合物[J]. 色谱, 2023, 41(12): 1095-1105. |
[7] | 赵倩茹, 刘骅, 孟雅萍, 李翔, 高瑞芳, 李祥胜. 超高效液相色谱-串联质谱法同时测定化妆品中83种糖皮质激素[J]. 色谱, 2023, 41(12): 1084-1094. |
[8] | 赵媛, 刘新, 张译丹, 张健, 刘向, 杨国锋. 基于串联质量标记的帕金森病血浆及血浆外泌体定量蛋白质组学分析[J]. 色谱, 2023, 41(12): 1073-1083. |
[9] | 翟洪稳, 马红玉, 曹梅荣, 张明星, 马俊美, 张岩, 李强. 在线样品制备技术耦合液相色谱-质谱系统在食品危害物检测中的应用进展[J]. 色谱, 2023, 41(12): 1062-1072. |
[10] | 余涛, 陈立, 张文敏, 张兰, 卢巧梅. 微孔有机网络材料的合成方法及其在样品前处理中的应用进展[J]. 色谱, 2023, 41(12): 1052-1061. |
[11] | 郭冬梅, 夏一然, Mujeeb ur RAHMAN, 王建忠, 刘家玮, 白泉. 嵌段共聚温敏亲和色谱固定相的制备及其对抗体的分离纯化[J]. 色谱, 2023, 41(12): 1045-1051. |
[12] | 张振永. 手性毛细管气相色谱法拆分4-氯甲基-2,2-二甲基-1,3-二氧戊环对映异构体[J]. 色谱, 2023, 41(12): 1135-1140. |
[13] | 宁霄, 金绍明, 李志远, 杨崇俊, 貌达, 曹进. 功能性老年乳粉中300种非法添加药物及其类似物的液相色谱-高分辨质谱分析[J]. 色谱, 2023, 41(11): 960-975. |
[14] | 童兰艳, 许博舟, 聂雪梅, 王秀娟, 马佳慧, 国伟, 李根容, 龚迎昆, 许秀丽. 液相色谱-四极杆/静电场轨道阱质谱法测定牛奶中22种真菌毒素[J]. 色谱, 2023, 41(11): 986-994. |
[15] | 章璐幸, 周征, 曹琳, 钱江. 基于自建数据库的超高效液相色谱-四极杆-飞行时间质谱法测定谷物中7种真菌毒素[J]. 色谱, 2023, 41(11): 1002-1009. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||