色谱 ›› 2024, Vol. 42 ›› Issue (9): 856-865.DOI: 10.3724/SP.J.1123.2023.11010
收稿日期:
2023-11-16
出版日期:
2024-09-08
发布日期:
2024-08-29
通讯作者:
*E-mail:hslongrcees@163.com.
基金资助:
WANG Haitang1,2, LI Hanyin1, LU Qiwei3, HE Shilong1,*()
Received:
2023-11-16
Online:
2024-09-08
Published:
2024-08-29
Supported by:
摘要:
新烟碱类农药作为一类新型农药,由于其对非靶标生物造成生态风险而引起广泛关注。为了实现污水中痕量新烟碱类农药的快速、准确定量,本研究建立了同时检测污水中8种新烟碱类农药(呋虫胺、E-烯啶虫胺、噻虫嗪、噻虫胺、吡虫啉、氯噻啉、啶虫脒和噻虫啉)的固相萃取-液相色谱-串联质谱法。确定选择色谱流动相类型和质谱参数后,采用单因素法确定固相萃取(SPE)的条件:萃取柱类型为HLB (500 mg/6 mL),上样体积为500 mL,上样速度为10 mL/min,样品pH为6~8。通过优化色谱梯度洗脱程序、样品的稀释倍数并采用同位素内标定量法降低污水样品的基质效应,确定污水稀释5倍进行前处理,采用ZORBAX Eclipse Plus C18色谱柱(100 mm×2.1 mm, 1.8 μm),以含0.1%甲酸的2 mmol/L乙酸铵水溶液和甲醇为流动相进行梯度洗脱,在正离子多反应监测模式下分析10 min,用吡虫啉-d4作为同位素内标进行定量。通过响应曲面法进一步优化SPE的淋洗液及洗脱液类型和用量,确定用10%甲醇水溶液淋洗,7 mL甲醇-乙腈(1∶1, v/v)混合溶液洗脱。8种新烟碱类化合物在相应范围内线性关系良好(线性相关系数(r)均大于0.9990),方法检出限(MDL)为0.2~1.2 ng/L,方法定量限(MQL)为0.8~4.8 ng/L,在低、中、高3个加标水平下的加标回收率为82.6%~94.2%, RSD为3.9%~9.4%。该方法成功用于4个城镇污水处理厂进水水样的分析,8种新烟碱类农药的检出含量为ND~256 ng/L。与类似方法相比,该方法检出限低,准确度高,适用于污水中8种新烟碱类农药的痕量检测。
中图分类号:
王海棠, 李含音, 陆启伟, 何士龙. 固相萃取-液相色谱-串联质谱法测定污水中8种新烟碱类农药[J]. 色谱, 2024, 42(9): 856-865.
WANG Haitang, LI Hanyin, LU Qiwei, HE Shilong. Determination of eight neonicotinoid pesticides in wastewater by solid phase extraction combined with liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2024, 42(9): 856-865.
Compound | Retention time/min | Precursor ion (m/z) | Product ion (m/z) | Fragmentor/V | Collision energy/eV |
---|---|---|---|---|---|
Dinotefuran | 3.35 | 203.2 | 129.1* | 80 | 12 |
87.1 | 80 | 14 | |||
E-Nitenpyram | 3.87 | 271.1 | 99.1 | 95 | 14 |
56.2* | 95 | 23 | |||
Thiamethoxam | 5.07 | 292.1 | 211.0* | 80 | 10 |
131.8 | 80 | 18 | |||
Clothianidin | 5.37 | 250.1 | 168.9* | 85 | 14 |
131.8 | 85 | 16 | |||
Imidacloprid-d4 | 6.09 | 260.1 | 213.1* | 100 | 14 |
179.1 | 100 | 20 | |||
Imidacloprid | 6.11 | 256.1 | 209.1* | 85 | 12 |
175.1 | 85 | 18 | |||
Imidaclothiz | 6.26 | 262.1 | 181.0* | 95 | 16 |
122.0 | 95 | 35 | |||
Acetamiprid | 6.72 | 223.1 | 126.0* | 110 | 20 |
56.1 | 110 | 16 | |||
Thiacloprid | 7.45 | 253.1 | 125.9* | 110 | 20 |
89.9 | 110 | 45 |
表1 目标化合物的保留时间和质谱参数
Table 1 Retention times and MS parameters of the target compounds
Compound | Retention time/min | Precursor ion (m/z) | Product ion (m/z) | Fragmentor/V | Collision energy/eV |
---|---|---|---|---|---|
Dinotefuran | 3.35 | 203.2 | 129.1* | 80 | 12 |
87.1 | 80 | 14 | |||
E-Nitenpyram | 3.87 | 271.1 | 99.1 | 95 | 14 |
56.2* | 95 | 23 | |||
Thiamethoxam | 5.07 | 292.1 | 211.0* | 80 | 10 |
131.8 | 80 | 18 | |||
Clothianidin | 5.37 | 250.1 | 168.9* | 85 | 14 |
131.8 | 85 | 16 | |||
Imidacloprid-d4 | 6.09 | 260.1 | 213.1* | 100 | 14 |
179.1 | 100 | 20 | |||
Imidacloprid | 6.11 | 256.1 | 209.1* | 85 | 12 |
175.1 | 85 | 18 | |||
Imidaclothiz | 6.26 | 262.1 | 181.0* | 95 | 16 |
122.0 | 95 | 35 | |||
Acetamiprid | 6.72 | 223.1 | 126.0* | 110 | 20 |
56.1 | 110 | 16 | |||
Thiacloprid | 7.45 | 253.1 | 125.9* | 110 | 20 |
89.9 | 110 | 45 |
图2 不同因素对目标化合物回收率的影响(n=3)
Fig. 2 Effect of different factors on the recoveries of the target compounds (n=3) a. extraction column; b. extraction volume; c. sample loading speed; d. pH.
图3 目标化合物在不同梯度洗脱程序下的色谱图
Fig. 3 Chromatograms of the target compounds under different gradient elution programs Gradient elution program: a. 0-3 min, 10%B-45%B; 3-7 min, 45%B-80%B; 7-7.1 min, 80%B-10%B; 7.1-8.1 min, 10%B. b. 0-5 min, 10%B-45%B; 5-9 min, 45%B-80%B; 9-9.1 min, 80%B-10%B; 9.1-10.1 min, 10%B. Peak identifications: 1. dinotefuran; 2. E-nitenpyram; 3. thiamethoxam; 4. clothianidin; 5. imidacloprid; 6. imidaclothiz; 7. acetamiprid; 8. thiacloprid.
Factor | Code | Levels | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
Volume fraction of methanol | X1 | 0 | 5 | 15 |
in water/% | ||||
Volume fraction of acetonitrile | X2 | 0 | 50 | 100 |
in methanol/% | ||||
Volume of eluent/mL | X3 | 3 | 6 | 9 |
表2 响应曲面的三因素与三水平
Table 2 Three factors and three levels of response surface methodology test
Factor | Code | Levels | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
Volume fraction of methanol | X1 | 0 | 5 | 15 |
in water/% | ||||
Volume fraction of acetonitrile | X2 | 0 | 50 | 100 |
in methanol/% | ||||
Volume of eluent/mL | X3 | 3 | 6 | 9 |
Source | Sum of square | Degree of freedom | Mean square | F- value | P- value |
---|---|---|---|---|---|
Model | 288.37 | 9 | 32.04 | 26.06 | 0.0001* |
X1 | 3.19 | 1 | 3.19 | 2.59 | 0.1514 |
X2 | 10.24 | 1 | 10.24 | 8.33 | 0.0235* |
X3 | 112.5 | 1 | 112.5 | 91.5 | <0.0001* |
X1X2 | 0.0025 | 1 | 0.0025 | 0.002 | 0.9653 |
X1X3 | 0.0006 | 1 | 0.0006 | 0.0005 | 0.9826 |
X2X3 | 0.0306 | 1 | 0.0306 | 0.0249 | 0.879 |
0.005 | 1 | 0.005 | 0.0041 | 0.9509 | |
32.79 | 1 | 32.79 | 26.67 | 0.0013* | |
121.78 | 1 | 121.78 | 99.05 | <0.0001* | |
Residual | 8.61 | 7 | 1.23 | ||
Lack of fit | 0.2144 | 3 | 0.0715 | 0.0341 | 0.9903 |
Pure error | 8.39 | 4 | 2.1 | ||
Cor total | 296.98 | 16 |
表3 回归模型方差分析
Table 3 Analysis of variance (ANOVA) of regression model
Source | Sum of square | Degree of freedom | Mean square | F- value | P- value |
---|---|---|---|---|---|
Model | 288.37 | 9 | 32.04 | 26.06 | 0.0001* |
X1 | 3.19 | 1 | 3.19 | 2.59 | 0.1514 |
X2 | 10.24 | 1 | 10.24 | 8.33 | 0.0235* |
X3 | 112.5 | 1 | 112.5 | 91.5 | <0.0001* |
X1X2 | 0.0025 | 1 | 0.0025 | 0.002 | 0.9653 |
X1X3 | 0.0006 | 1 | 0.0006 | 0.0005 | 0.9826 |
X2X3 | 0.0306 | 1 | 0.0306 | 0.0249 | 0.879 |
0.005 | 1 | 0.005 | 0.0041 | 0.9509 | |
32.79 | 1 | 32.79 | 26.67 | 0.0013* | |
121.78 | 1 | 121.78 | 99.05 | <0.0001* | |
Residual | 8.61 | 7 | 1.23 | ||
Lack of fit | 0.2144 | 3 | 0.0715 | 0.0341 | 0.9903 |
Pure error | 8.39 | 4 | 2.1 | ||
Cor total | 296.98 | 16 |
图5 淋洗液、洗脱液和洗脱体积对噻虫啉回收率影响的响应曲面图
Fig. 5 Response surface methodology plots of effect of rinsing, elution solvent and elution volume on the recoveries of thiacloprid
Compound | X1/% | X2/% | X3/mL | Recovery/% |
---|---|---|---|---|
Dinotefuran | 10.49 | 50 | 7.056 | 96.17 |
E-Nitenpyram | 13.32 | 80 | 6.561 | 96.38 |
Thiamethoxam | 9.32 | 50 | 6.444 | 96.63 |
Clothianidin | 4.24 | 80 | 7.137 | 93.81 |
Imidacloprid | 3.92 | 60 | 6.711 | 95.16 |
Imidaclothiz | 6.08 | 30 | 6.678 | 96.01 |
Acetamiprid | 6.66 | 60 | 7.026 | 98.53 |
Thiacloprid | 12.10 | 70 | 6.714 | 96.47 |
表4 8种新烟碱类农药通过响应曲面法获得的最优参数
Table 4 Optimal parameters of the eight neonicotinoid pesticides obtained by response surface methodology
Compound | X1/% | X2/% | X3/mL | Recovery/% |
---|---|---|---|---|
Dinotefuran | 10.49 | 50 | 7.056 | 96.17 |
E-Nitenpyram | 13.32 | 80 | 6.561 | 96.38 |
Thiamethoxam | 9.32 | 50 | 6.444 | 96.63 |
Clothianidin | 4.24 | 80 | 7.137 | 93.81 |
Imidacloprid | 3.92 | 60 | 6.711 | 95.16 |
Imidaclothiz | 6.08 | 30 | 6.678 | 96.01 |
Acetamiprid | 6.66 | 60 | 7.026 | 98.53 |
Thiacloprid | 12.10 | 70 | 6.714 | 96.47 |
Compound | Regression equation | r | Linear range/(μg/L) | MDL/(ng/L) | MQL/(ng/L) |
---|---|---|---|---|---|
Dinotefuran | y=1.723x+0.0374 | 0.9996 | 0.5-100 | 0.8 | 3.2 |
E-Nitenpyram | y=1.545x+0.0376 | 0.9995 | 0.2-100 | 0.4 | 1.6 |
Thiamethoxam | y=3.734x+0.0654 | 0.9996 | 0.2-100 | 0.5 | 2.0 |
Clothianidin | y=0.499x+0.013 | 0.9991 | 0.2-100 | 0.6 | 2.4 |
Imidacloprid | y=1.345x+0.0458 | 0.9995 | 0.5-100 | 1.2 | 4.8 |
Imidaclothiz | y=1.302x+0.0256 | 0.9993 | 0.2-100 | 0.4 | 1.6 |
Acetamiprid | y=7.443x+0.201 | 0.9994 | 0.1-100 | 0.2 | 0.8 |
Thiacloprid | y=7.342x+0.091 | 0.9995 | 0.1-100 | 0.3 | 1.2 |
表5 8种新烟碱类化合物的线性方程、相关系数、线性范围、方法检出限及方法定量限
Table 5 Linear regression equations, correlation coefficients (r), linear ranges, method detection limits (MDLs) and method quantification limits (MQLs) of the eight neonicotinoid compounds
Compound | Regression equation | r | Linear range/(μg/L) | MDL/(ng/L) | MQL/(ng/L) |
---|---|---|---|---|---|
Dinotefuran | y=1.723x+0.0374 | 0.9996 | 0.5-100 | 0.8 | 3.2 |
E-Nitenpyram | y=1.545x+0.0376 | 0.9995 | 0.2-100 | 0.4 | 1.6 |
Thiamethoxam | y=3.734x+0.0654 | 0.9996 | 0.2-100 | 0.5 | 2.0 |
Clothianidin | y=0.499x+0.013 | 0.9991 | 0.2-100 | 0.6 | 2.4 |
Imidacloprid | y=1.345x+0.0458 | 0.9995 | 0.5-100 | 1.2 | 4.8 |
Imidaclothiz | y=1.302x+0.0256 | 0.9993 | 0.2-100 | 0.4 | 1.6 |
Acetamiprid | y=7.443x+0.201 | 0.9994 | 0.1-100 | 0.2 | 0.8 |
Thiacloprid | y=7.342x+0.091 | 0.9995 | 0.1-100 | 0.3 | 1.2 |
Compound | Added/(ng/L) | Recovery/% | RSD/% | Compound | Added/(ng/L) | Recovery/% | RSD/% |
---|---|---|---|---|---|---|---|
Dinotefuran | 10 | 86.4 | 8.7 | Imidacloprid | 10 | 87.1 | 9.4 |
200 | 93.8 | 6.5 | 200 | 91.8 | 5.9 | ||
1000 | 94.2 | 7.9 | 1000 | 87.5 | 5.5 | ||
E-Nitenpyram | 10 | 91.8 | 7.9 | Imidaclothiz | 10 | 85.4 | 8.6 |
200 | 93.5 | 6.5 | 200 | 92.5 | 7.8 | ||
1000 | 93.8 | 5.8 | 1000 | 91.7 | 6.9 | ||
Thiamethoxam | 10 | 89.4 | 9.4 | Acetamiprid | 10 | 82.6 | 6.8 |
200 | 92.1 | 8.4 | 200 | 86.8 | 4.7 | ||
1000 | 94.1 | 5.2 | 1000 | 92.7 | 6.2 | ||
Clothianidin | 10 | 87.2 | 9.3 | Thiacloprid | 10 | 85.8 | 6.4 |
200 | 92.1 | 5.8 | 200 | 91.1 | 4.5 | ||
1000 | 93.3 | 6.7 | 1000 | 93.4 | 3.9 |
表6 8种新烟碱类化合物在3个水平下的加标回收率和RSD (n=3)
Table 6 Recoveries and RSDs of the eight neonicotinoid compounds at three spiked levels (n=3)
Compound | Added/(ng/L) | Recovery/% | RSD/% | Compound | Added/(ng/L) | Recovery/% | RSD/% |
---|---|---|---|---|---|---|---|
Dinotefuran | 10 | 86.4 | 8.7 | Imidacloprid | 10 | 87.1 | 9.4 |
200 | 93.8 | 6.5 | 200 | 91.8 | 5.9 | ||
1000 | 94.2 | 7.9 | 1000 | 87.5 | 5.5 | ||
E-Nitenpyram | 10 | 91.8 | 7.9 | Imidaclothiz | 10 | 85.4 | 8.6 |
200 | 93.5 | 6.5 | 200 | 92.5 | 7.8 | ||
1000 | 93.8 | 5.8 | 1000 | 91.7 | 6.9 | ||
Thiamethoxam | 10 | 89.4 | 9.4 | Acetamiprid | 10 | 82.6 | 6.8 |
200 | 92.1 | 8.4 | 200 | 86.8 | 4.7 | ||
1000 | 94.1 | 5.2 | 1000 | 92.7 | 6.2 | ||
Clothianidin | 10 | 87.2 | 9.3 | Thiacloprid | 10 | 85.8 | 6.4 |
200 | 92.1 | 5.8 | 200 | 91.1 | 4.5 | ||
1000 | 93.3 | 6.7 | 1000 | 93.4 | 3.9 |
Analytes | Sample type | Sample volume/ (mL) | MDL/ (ng/L) | Linear range/ (μg/L) | RSD/% | RE/% | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dinotefuran, E-nitenpyram, thiamethoxam, clothianidin, imidacloprid, imidaclothiz, acetamiprid, thiacloprid | wastewater | 100 | 0.2- | 1.2 | 0.1- | 100* | 3.9- | 9.4 | 82.6-94.2 | this study | |
Acetamiprid, imidacloprid, thiacloprid, thiamethoxam, clothianidin, dinotefuran | wastewater | 500 | 1.8- | 6.8 | 1- | 500 | 5.26- | 11.5 | 33.7-116 | [17] | |
Dinotefuran, thiamethoxam, clothianidin, imidacloprid, imidaclothiz, acetamiprid, thiacloprid | drinking water | 500 | 0.01- | 0.2 | 0.01- | 200 | 1.6- | 7.3 | 74.0-123 | [9] | |
Thiamethoxam, clothianidin, imidacloprid, acetamiprid, | sea water | 1000 | 0.1- | 7.8 | 0.05- | 100 | 3- | 18 | 72.0-117 | [24] | |
thiacloprid | river water | 0.1- | 1.0 |
表7 与其他文献的比较
Table 7 Comparison with other literatures
Analytes | Sample type | Sample volume/ (mL) | MDL/ (ng/L) | Linear range/ (μg/L) | RSD/% | RE/% | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dinotefuran, E-nitenpyram, thiamethoxam, clothianidin, imidacloprid, imidaclothiz, acetamiprid, thiacloprid | wastewater | 100 | 0.2- | 1.2 | 0.1- | 100* | 3.9- | 9.4 | 82.6-94.2 | this study | |
Acetamiprid, imidacloprid, thiacloprid, thiamethoxam, clothianidin, dinotefuran | wastewater | 500 | 1.8- | 6.8 | 1- | 500 | 5.26- | 11.5 | 33.7-116 | [17] | |
Dinotefuran, thiamethoxam, clothianidin, imidacloprid, imidaclothiz, acetamiprid, thiacloprid | drinking water | 500 | 0.01- | 0.2 | 0.01- | 200 | 1.6- | 7.3 | 74.0-123 | [9] | |
Thiamethoxam, clothianidin, imidacloprid, acetamiprid, | sea water | 1000 | 0.1- | 7.8 | 0.05- | 100 | 3- | 18 | 72.0-117 | [24] | |
thiacloprid | river water | 0.1- | 1.0 |
Compound | Contents/(ng/L) | ME/% | |||
---|---|---|---|---|---|
S1 | S2 | S3 | S4 | ||
Dinotefuran | ND | 5.49 | 6.69 | 23.1 | 84.3-98.7 |
E-Nitenpyram | ND | 4.83 | 5.39 | 13.2 | 80.9-96.2 |
Thiamethoxam | 11.6 | 18.1 | 9.46 | 15.2 | 90.4-103.5 |
Clothianidin | 8.91 | 13.4 | 10.7 | 17.9 | 89.7-108.1 |
Imidacloprid | 31.1 | 256 | 178 | 189 | 97.2-113.7 |
Imidaclothiz | ND | 14.5 | 14.2 | 12.3 | 93.2-104.8 |
Acetamiprid | 8.45 | 17.9 | 16.6 | 57.2 | 96.9-112.7 |
Thiacloprid | 135 | 1.98 | 2.47 | 1.89 | 87.6-105.3 |
表8 实际废水样品中8种新烟碱类化合物的含量和基质效应
Table 8 Contents and MEs of the eight neonicotinoid compounds in real wastewater samples
Compound | Contents/(ng/L) | ME/% | |||
---|---|---|---|---|---|
S1 | S2 | S3 | S4 | ||
Dinotefuran | ND | 5.49 | 6.69 | 23.1 | 84.3-98.7 |
E-Nitenpyram | ND | 4.83 | 5.39 | 13.2 | 80.9-96.2 |
Thiamethoxam | 11.6 | 18.1 | 9.46 | 15.2 | 90.4-103.5 |
Clothianidin | 8.91 | 13.4 | 10.7 | 17.9 | 89.7-108.1 |
Imidacloprid | 31.1 | 256 | 178 | 189 | 97.2-113.7 |
Imidaclothiz | ND | 14.5 | 14.2 | 12.3 | 93.2-104.8 |
Acetamiprid | 8.45 | 17.9 | 16.6 | 57.2 | 96.9-112.7 |
Thiacloprid | 135 | 1.98 | 2.47 | 1.89 | 87.6-105.3 |
|
[1] | 薛钰凡, 商婷, 崔君涛, 赵灵娟, 李佩, 曾祥英, 于志强. 固相支撑液液萃取-液相色谱-串联质谱测定尿液中10种双酚类化合物和5种对羟基苯甲酸酯[J]. 色谱, 2024, 42(9): 827-836. |
[2] | 陈月琴, 马明, 徐红丹, 潘春燕. 固相萃取-超高效液相色谱-串联质谱法同时测定水中61种激素[J]. 色谱, 2024, 42(9): 866-874. |
[3] | 陈宗保, 谢诗烨, 刘泳君, 张文敏, 方敏, 张兰. 锆基金属有机骨架复合材料用于海水中短裸甲藻毒素的固相萃取[J]. 色谱, 2024, 42(9): 819-826. |
[4] | 刘小琦, 刘真真, 王美玉, 谷晨舒, 王新全, 刘连亮, 齐沛沛. QuEChERS-超高效液相色谱-串联质谱分析鱼中13种全氟及多氟烷基化合物[J]. 色谱, 2024, 42(8): 740-748. |
[5] | 潘旺, 张申平, 王安琪, 胡军, 周丽绘. 基于改性壳聚糖膜净化的超高效液相色谱-四极杆/静电场轨道阱质谱法测定牛奶中5种兽药残留[J]. 色谱, 2024, 42(8): 758-765. |
[6] | 冯灏, 张炜, 何保山, 李盼盼, 高树青, 郭宝元, 杨永坛. 超高效液相色谱-三重四极杆质谱法同时检测植物油中21种全氟及多氟烷基化合物[J]. 色谱, 2024, 42(8): 731-739. |
[7] | 梁富超, 柯弥, 田瑞军. 应用于原代T细胞酪氨酸磷酸化蛋白质组的高灵敏度分析方法[J]. 色谱, 2024, 42(7): 693-701. |
[8] | 何宇, 单亦初, 张丽华, 张振宾, 李洋. 一种基于疏水基团标记和反相色谱分离的富集策略及其在含赖氨酸多肽分析中的应用[J]. 色谱, 2024, 42(7): 721-729. |
[9] | 谢宝轩, 吕洋, 刘震. 用于复杂生物样品体系分离与识别的分子印迹技术最新进展[J]. 色谱, 2024, 42(6): 508-523. |
[10] | 姜丽艳, 张玮璐, 赵璐, 胡良海. 磁性氮化碳复合材料的制备及其对磷酸化肽的富集[J]. 色谱, 2024, 42(6): 564-571. |
[11] | 陈建, 徐坤, 高涵, 赵睿, 黄嫣嫣. 多肽功能化亲和微球的制备与线粒体高选择性分离分析[J]. 色谱, 2024, 42(6): 555-563. |
[12] | 陈欣, 钱文平, 陈天奇, 邵凌云, 张文芬, 张书胜. 含氟富氮多孔有机聚合物的合成及其对水中全氟辛酸的去除[J]. 色谱, 2024, 42(6): 572-580. |
[13] | 朱万燕, 张鸿伟, 车立志, 徐文远, 伦才智, 徐久飞, 徐豪, 陈伟. 超高效液相色谱-串联质谱法同时测定禽蛋中31种产蛋期禁用兽药[J]. 色谱, 2024, 42(5): 420-431. |
[14] | 万建春, 韩颖, 马欣欣, 李仕祥, 伍华雯, 吉丽华, 邓智伟, 占春瑞. 超高效液相色谱-串联质谱法测定猪尿中12种禁用兽药残留[J]. 色谱, 2024, 42(5): 474-480. |
[15] | 彭茂民, 喻小兵, 陈琳, 熊青松, 刘丽, 郑丹, 夏虹, 余琼卫, 彭西甜. 改进的QuEChERS结合超高效液相色谱-串联质谱法检测饲料中的环匹阿尼酸[J]. 色谱, 2024, 42(5): 445-451. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||