色谱 ›› 2024, Vol. 42 ›› Issue (6): 508-523.DOI: 10.3724/SP.J.1123.2024.01011
收稿日期:
2024-01-10
出版日期:
2024-06-08
发布日期:
2024-06-07
通讯作者:
*Tel:(025)89685639,E-mail:zhenliu@nju.edu.cn.
基金资助:
XIE Baoxuan, LYU Yang, LIU Zhen*()
Received:
2024-01-10
Online:
2024-06-08
Published:
2024-06-07
Supported by:
摘要:
由生物样品中复杂组分所导致的基质效应会严重影响分离分析技术的准确性、灵敏度与可靠性。免疫亲和技术作为降低或消除基质效应的方法已被广泛应用于诊断分析和蛋白纯化等领域,但该技术仍存在明显的缺点,如成本高昂、制备流程繁琐、保存条件苛刻以及配体浸出等问题。目前,如何通过有效降低或消除复杂生物样品中的基质效应来实现痕量目标分析物的分离及识别仍是一个具有挑战性的问题。分子印迹技术(molecular imprinting technology, MIT)一直被广泛应用于固相萃取与色谱分离等领域,随着MIT的发展,各种新型印迹策略被提出;其中,分子印迹聚合物(molecularly imprinted polymer, MIP)作为一种能够模拟抗原-抗体间相互作用的高分子聚合物,可以从各种复杂生物样品中提取出目标分析物,从而有效消除基质效应的影响。MIP不仅拥有高特异性与高亲和力的优点,而且与抗体和适配体等生物大分子相比,MIP还具有稳定性高、成本低廉以及制备简便等优势。近年来一些基于MIT的传统分离技术得到了深入发展,其中包括色谱固定相以及固相萃取吸附剂等。此外,结合了MIT与高灵敏检测技术的分析方法在疾病诊断和生物成像等领域也受到了广泛关注。本文着重介绍了近年来发展的新型印迹策略,并介绍了基于MIP的分离分析方法在各领域中的应用以及现阶段存在的不足,最后对MIT的未来发展方向做出了展望。
中图分类号:
谢宝轩, 吕洋, 刘震. 用于复杂生物样品体系分离与识别的分子印迹技术最新进展[J]. 色谱, 2024, 42(6): 508-523.
XIE Baoxuan, LYU Yang, LIU Zhen. Recent advances of molecular imprinting technology for the separation and recognition of complex biological sample systems[J]. Chinese Journal of Chromatography, 2024, 42(6): 508-523.
图 5 ROSIC策略的示意图[36]
Fig. 5 Schematic illustration of the reverse microemulsion-confined epitope-oriented surface imprinting and cladding (ROSIC) strategy[36] a. template preparation: grafting the epitope with a hydrophobic chain; b. preparation procedure of core/shell cladding molecularly imprinted polymer (cMIP) nanoparticles for the recognition of specific proteins and peptides.
图 8 双模态比例免疫测定法的示意图[80]
Fig. 8 Schematic illustration of dual-modal ratiometric immunoassay[80] a. analyte extraction and labeling; b. dual-modal ratiometric immunoassay detection.
Application | Materials | Method | Templates | Samples | Separation and detection modes | Ref. |
---|---|---|---|---|---|---|
Chromatog- raphy | MIP filled column | precipitation poly- merization | polymyxin E | muscle samples including beef, pork and chicken | LC-MS/MS | [ |
MIP monolithic column | bulk polymerization | MMF | plasma | HPLC | [ | |
GO-MIP | bulk polymerization | DA | human serum and DA hydrochloride injection | CEC | [ | |
SPE | OFX-imprinted Fe3O4@MIP | RAFT polymerization | OFX | human urine | magnetic separation | [ |
HD-MMIP | surface imprinting | TC | milk sample | magnetic separation | [ | |
Fe3O4@rGO@MIP | surface imprinting | BSA | fetal bovine serum | magnetic separation | [ | |
BSA-MMIP | surface imprinting | BSA | protein solutions | magnetic separation | [ | |
BHb-MMIP | surface imprinting | BHb | bovine serum | magnetic separation | [ | |
MIPMS | direct incorporation method | salbutamol sulfate | serum | centrifuge | [ | |
SiO2-PQDs-MIPs | surface imprinting | Trf | urine and serum | fluorescence spectro- photometer | [ | |
AMP-imprinted MSN | DTD-OMI | AMP | urine | micellar electrokinetic chromatography | [ | |
BHb-MiM | surface imprinting | BHb | protein solutions | membrane separation | [ | |
MIM | bulk polymerization | BHb | bovine serum | membrane separation | [ | |
Disease diagnosis | TNF-α MIP | bulk polymerization | TNF-α | - | electrochemical biosensor | [ |
NFluidEx | electro-polymeriza- tion | IgG/IgM | saliva and blood | electrochemical biosensor | [ | |
NSE-imprinted Ag/PATP@SiO2 NPs and NSE-imprinted AuNP SAM-coated glass substrates | surface imprinting | NSE epitope | human serum | Raman spectrometer | [ | |
AFP/Fuc-imprinted labeling SERS tag and AFP-imprinted substrate | surface imprinting | AFP epitope and Fuc | human serum | Raman spectrometer | [ | |
AFP/A2G2S2-imprinted Au/Ag NP and AFP-imprinted substrate | surface imprinting | AFP epitope and A2G2S2 | human serum | Raman spectrometer and LDI-MS | [ | |
Bioimaging | GlcA-imprinted MIP | precipitation polymerization | GlcA | keratinocytes and human skin specimen | confocal microscopy | [ |
MIPNANA-QDs MIPGlcA-QD | photopolymerization | GlcA and NANA | keratinocytes | confocal microscopy | [ | |
SA/Fuc/Man-imprinted QD | surface imprinting | SA, Fuc and Man | cells | confocal microscopy | [ | |
SA-imprinted SERS nanotags | surface imprinting | SA | liver cancer cells and tissues | Raman spectroscopy | [ | |
Anti-pY-cMIP SERS nanotags | surface imprinting | phosphotyrosine | liver cancer cells and tissues | Raman spectroscopy | [ | |
anti-hVEGF-MIP | surface imprinting | hVEGF epitope | zebrafish embryos | confocal microscopy | [ | |
Proteomics | Mono-MIP | bulk polymerization | KacA | cell lysates | nano-LC-MS/MS | [ |
pyrophosphate-imprinted MMSMs | DTD-OMI | pyrophosphate | digested nonfat milk and human serum | MALDI-TOF MS | [ | |
Lys-MIP | surface imprinting | Lys | chicken egg white | MALDI-TOF MS | [ | |
cryogel MIP | bulk polymerization | human serum | human serum | nano-LC-MS/MS | [ | |
MIP | dull template method | silica nanoparti- cles | urine and HeLa-CCM | LC-MS | [ |
表 1 MIT在复杂生物样品分离分析中的应用
Table 1 Application of MIT in separation and analysis of complex biological samples
Application | Materials | Method | Templates | Samples | Separation and detection modes | Ref. |
---|---|---|---|---|---|---|
Chromatog- raphy | MIP filled column | precipitation poly- merization | polymyxin E | muscle samples including beef, pork and chicken | LC-MS/MS | [ |
MIP monolithic column | bulk polymerization | MMF | plasma | HPLC | [ | |
GO-MIP | bulk polymerization | DA | human serum and DA hydrochloride injection | CEC | [ | |
SPE | OFX-imprinted Fe3O4@MIP | RAFT polymerization | OFX | human urine | magnetic separation | [ |
HD-MMIP | surface imprinting | TC | milk sample | magnetic separation | [ | |
Fe3O4@rGO@MIP | surface imprinting | BSA | fetal bovine serum | magnetic separation | [ | |
BSA-MMIP | surface imprinting | BSA | protein solutions | magnetic separation | [ | |
BHb-MMIP | surface imprinting | BHb | bovine serum | magnetic separation | [ | |
MIPMS | direct incorporation method | salbutamol sulfate | serum | centrifuge | [ | |
SiO2-PQDs-MIPs | surface imprinting | Trf | urine and serum | fluorescence spectro- photometer | [ | |
AMP-imprinted MSN | DTD-OMI | AMP | urine | micellar electrokinetic chromatography | [ | |
BHb-MiM | surface imprinting | BHb | protein solutions | membrane separation | [ | |
MIM | bulk polymerization | BHb | bovine serum | membrane separation | [ | |
Disease diagnosis | TNF-α MIP | bulk polymerization | TNF-α | - | electrochemical biosensor | [ |
NFluidEx | electro-polymeriza- tion | IgG/IgM | saliva and blood | electrochemical biosensor | [ | |
NSE-imprinted Ag/PATP@SiO2 NPs and NSE-imprinted AuNP SAM-coated glass substrates | surface imprinting | NSE epitope | human serum | Raman spectrometer | [ | |
AFP/Fuc-imprinted labeling SERS tag and AFP-imprinted substrate | surface imprinting | AFP epitope and Fuc | human serum | Raman spectrometer | [ | |
AFP/A2G2S2-imprinted Au/Ag NP and AFP-imprinted substrate | surface imprinting | AFP epitope and A2G2S2 | human serum | Raman spectrometer and LDI-MS | [ | |
Bioimaging | GlcA-imprinted MIP | precipitation polymerization | GlcA | keratinocytes and human skin specimen | confocal microscopy | [ |
MIPNANA-QDs MIPGlcA-QD | photopolymerization | GlcA and NANA | keratinocytes | confocal microscopy | [ | |
SA/Fuc/Man-imprinted QD | surface imprinting | SA, Fuc and Man | cells | confocal microscopy | [ | |
SA-imprinted SERS nanotags | surface imprinting | SA | liver cancer cells and tissues | Raman spectroscopy | [ | |
Anti-pY-cMIP SERS nanotags | surface imprinting | phosphotyrosine | liver cancer cells and tissues | Raman spectroscopy | [ | |
anti-hVEGF-MIP | surface imprinting | hVEGF epitope | zebrafish embryos | confocal microscopy | [ | |
Proteomics | Mono-MIP | bulk polymerization | KacA | cell lysates | nano-LC-MS/MS | [ |
pyrophosphate-imprinted MMSMs | DTD-OMI | pyrophosphate | digested nonfat milk and human serum | MALDI-TOF MS | [ | |
Lys-MIP | surface imprinting | Lys | chicken egg white | MALDI-TOF MS | [ | |
cryogel MIP | bulk polymerization | human serum | human serum | nano-LC-MS/MS | [ | |
MIP | dull template method | silica nanoparti- cles | urine and HeLa-CCM | LC-MS | [ |
|
[1] | 康晶燕, 师彦平. 基于超分子衍生类多孔有机聚合物的样品前处理方法研究进展[J]. 色谱, 2024, 42(6): 496-507. |
[2] | 刘家玮, 唐长伟, 夏一然, 白泉. 色谱技术在抗体分离纯化中的应用进展[J]. 色谱, 2024, 42(6): 533-543. |
[3] | 姜丽艳, 张玮璐, 赵璐, 胡良海. 磁性氮化碳复合材料的制备及其对磷酸化肽的富集[J]. 色谱, 2024, 42(6): 564-571. |
[4] | 陈建, 徐坤, 高涵, 赵睿, 黄嫣嫣. 多肽功能化亲和微球的制备与线粒体高选择性分离分析[J]. 色谱, 2024, 42(6): 555-563. |
[5] | 郑德圣, 汤雯淇, 朱建平, 古志远. 基于二维材料的色谱固定相制备及应用[J]. 色谱, 2024, 42(6): 524-532. |
[6] | 李小倩, 夏之宁. 深共晶溶剂协同羧甲基-β-环糊精促进美托洛尔的毛细管电泳手性分离[J]. 色谱, 2024, 42(4): 327-332. |
[7] | 王盼, 马继平, 李爽, 程嘉雯, 黄超囡. 基于金属有机骨架多孔碳材料的分散固相萃取-超高效液相色谱-串联质谱法测定水中4种酚类内分泌干扰物[J]. 色谱, 2024, 42(3): 264-274. |
[8] | 何红梅, 徐玲英, 张昌朋, 方楠, 蒋金花, 王祥云, 俞建忠, 赵学平. 液相色谱-串联质谱法测定土壤、沉积物和水中3种新型除草剂残留[J]. 色谱, 2024, 42(3): 256-263. |
[9] | 方敏, 吴雅萍, 张文敏, 张兰, 杨振泉. 新型功能材料在藻毒素萃取中的应用进展[J]. 色谱, 2024, 42(3): 225-233. |
[10] | 支梦雪, 王建设. 暴露组学在识别环境污染物及其健康危害中的应用进展[J]. 色谱, 2024, 42(2): 142-149. |
[11] | 刘惠楠, 孙振东, 刘倩, 周群芳, 江桂斌. 合成酚类化合物的脂代谢干扰效应与致肥胖作用[J]. 色谱, 2024, 42(2): 131-141. |
[12] | 张明烨, 曹衍, 李想, 寇婧, 徐启彤, 阳思洁, 郑志义, 刘俊, 梅素容. 人血清中97种典型化学污染物暴露特征及健康风险评估[J]. 色谱, 2024, 42(2): 217-223. |
[13] | 李芳, 罗茜. 质谱成像技术在环境污染物分析及毒性研究中的应用进展[J]. 色谱, 2024, 42(2): 150-158. |
[14] | 宋媛媛, 祁增华, 蔡宗苇. 多组学质谱分析技术在化学暴露组研究中的应用[J]. 色谱, 2024, 42(2): 120-130. |
[15] | 由蕾, 孙国皓, 于迪, 刘心昱, 许国旺. 基于色谱-质谱联用的暴露组学分析方法和研究范式的新进展[J]. 色谱, 2024, 42(2): 109-119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||