Chinese Journal of Chromatography ›› 2020, Vol. 38 ›› Issue (12): 1388-1395.DOI: 10.3724/SP.J.1123.2020.03020
• Articles • Previous Articles Next Articles
YANG Guangyong1,*(), GUO Cangting2, XUE Guang1, GUO Jinxi1
Received:
2020-03-19
Online:
2020-12-08
Published:
2020-12-01
Contact:
YANG Guangyong
CLC Number:
YANG Guangyong, GUO Cangting, XUE Guang, GUO Jinxi. Determination of 15 3-chloro-1,2-propanediol fatty acid esters in vegetable oils and fritters by ultra performance convergence chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2020, 38(12): 1388-1395.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chrom-china.com/EN/10.3724/SP.J.1123.2020.03020
Analyte | Retention time/min | Mr | Parent ion (m/z) | Daughter ions (m/z) |
---|---|---|---|---|
1-Lauroyl-3-chloropropanediol (La) | 4.31 | 292.84 | 310.7 | 183.4*, 57.1 |
1-Myristoyl-3-chloropropanediol (My) | 4.76 | 320.90 | 338.8 | 211.3*, 56.9 |
1-Palmitoyl-3-chloropropanediol (P) | 5.06 | 348.95 | 366.7 | 239.2*, 331.5 |
1-Linolenoyl-3-chloropropanediol (Ln) | 5.59 | 370.95 | 388.7 | 261.3*, 243.3 |
1-Linoleoyl -3-chloropropanediol (L) | 5.61 | 372.97 | 390.8 | 263.4*, 245.3 |
1-Oleoyl-3-chloropropanediol (O) | 6.15 | 374.99 | 392.8 | 265.4*, 247.2 |
1-Stearoyl-3-chloropropanediol (St) | 6.44 | 377.00 | 394.9 | 267.5*, 249.2 |
1,2-Dipalmitoyl-3-chloropropanediol (PP) | 6.64 | 587.36 | 605.3 | 331.9*, 239.4 |
1,2-Dilinolenoyl-3-chloropropanediol (LnLn) | 6.81 | 631.37 | 649.6 | 353.8*, 261.3 |
1-Oleoyl-2-linolenoyl-3-chloropropanediol (OLn) | 7.01 | 635.40 | 653.6 | 353.8*, 358.4 |
1,2-Dilinoleoyl -3-chloropropanediol (LL) | 7.33 | 635.40 | 653.7 | 355.9*, 263.5 |
1-Oleoyl-2-linoleoyl-3-chloropropanediol (OL) | 7.59 | 637.42 | 655.6 | 355.7*, 357.6 |
1,2-Dioleoyl-3-chloropropanediol (OO) | 7.85 | 639.43 | 657.6 | 357.8*, 265.4 |
1-Oleoyl-2-stearoyl-3-chloropropanediol (OSt) | 7.97 | 641.45 | 659.2 | 359.9*, 357.5 |
1,2-Distearoyl-3-chloropropanediol (StSt) | 8.12 | 643.46 | 661.7 | 359.8*, 267.3 |
Table 1 Retention times, Mr, parent ions and daughter ions of the 15 3-chloro-1,2-propanediol fatty acid esters (3-MCPDE)
Analyte | Retention time/min | Mr | Parent ion (m/z) | Daughter ions (m/z) |
---|---|---|---|---|
1-Lauroyl-3-chloropropanediol (La) | 4.31 | 292.84 | 310.7 | 183.4*, 57.1 |
1-Myristoyl-3-chloropropanediol (My) | 4.76 | 320.90 | 338.8 | 211.3*, 56.9 |
1-Palmitoyl-3-chloropropanediol (P) | 5.06 | 348.95 | 366.7 | 239.2*, 331.5 |
1-Linolenoyl-3-chloropropanediol (Ln) | 5.59 | 370.95 | 388.7 | 261.3*, 243.3 |
1-Linoleoyl -3-chloropropanediol (L) | 5.61 | 372.97 | 390.8 | 263.4*, 245.3 |
1-Oleoyl-3-chloropropanediol (O) | 6.15 | 374.99 | 392.8 | 265.4*, 247.2 |
1-Stearoyl-3-chloropropanediol (St) | 6.44 | 377.00 | 394.9 | 267.5*, 249.2 |
1,2-Dipalmitoyl-3-chloropropanediol (PP) | 6.64 | 587.36 | 605.3 | 331.9*, 239.4 |
1,2-Dilinolenoyl-3-chloropropanediol (LnLn) | 6.81 | 631.37 | 649.6 | 353.8*, 261.3 |
1-Oleoyl-2-linolenoyl-3-chloropropanediol (OLn) | 7.01 | 635.40 | 653.6 | 353.8*, 358.4 |
1,2-Dilinoleoyl -3-chloropropanediol (LL) | 7.33 | 635.40 | 653.7 | 355.9*, 263.5 |
1-Oleoyl-2-linoleoyl-3-chloropropanediol (OL) | 7.59 | 637.42 | 655.6 | 355.7*, 357.6 |
1,2-Dioleoyl-3-chloropropanediol (OO) | 7.85 | 639.43 | 657.6 | 357.8*, 265.4 |
1-Oleoyl-2-stearoyl-3-chloropropanediol (OSt) | 7.97 | 641.45 | 659.2 | 359.9*, 357.5 |
1,2-Distearoyl-3-chloropropanediol (StSt) | 8.12 | 643.46 | 661.7 | 359.8*, 267.3 |
Analyte | Linear range/(μg/L) | Linear equation | r2 | LOD/(μg/L) | LOQ/(μg/L) | Recovery/% | RSD (n=9)/% |
---|---|---|---|---|---|---|---|
La | 2.0-100 | Y=2.39×103X+3.32×102 | 0.9991 | 0.47 | 1.25 | 96.0 | 4.6 |
My | 2.0-100 | Y=2.51×103X-3.17×102 | 0.9989 | 0.54 | 1.45 | 97.2 | 5.3 |
P | 2.0-100 | Y=2.61×103X-1.09×102 | 0.9997 | 0.51 | 1.39 | 98.1 | 3.3 |
Ln | 2.0-100 | Y=2.99×103X-4.11×102 | 0.9985 | 0.45 | 1.17 | 98.5 | 5.0 |
L | 2.0-100 | Y=2.63×103X+3.05×102 | 0.9991 | 0.52 | 1.35 | 95.4 | 2.6 |
O | 2.0-100 | Y=2.04×103X -2.52×102 | 0.9993 | 0.68 | 1.74 | 95.8 | 3.3 |
St | 2.0-100 | Y=2.58×103X+3.57×102 | 0.9994 | 0.49 | 1.15 | 93.5 | 2.1 |
PP | 0.5-100 | Y=2.43×104X+1.52×103 | 0.9987 | 0.07 | 0.16 | 96.6 | 2.2 |
LnLn | 0.5-100 | Y=2.99×104X+2.11×103 | 0.9973 | 0.07 | 0.18 | 95.5 | 3.2 |
OLn | 0.5-100 | Y=3.50×104X-2.08×103 | 0.9988 | 0.02 | 0.05 | 94.6 | 2.2 |
LL | 0.5-100 | Y=2.52×104X+1.21×103 | 0.9990 | 0.04 | 0.10 | 91.9 | 2.3 |
OL | 0.5-100 | Y=3.14×104X-1.43×103 | 0.9992 | 0.04 | 0.10 | 87.1 | 1.8 |
OO | 0.5-100 | Y=3.09×104X+2.21×103 | 0.9990 | 0.04 | 0.10 | 86.6 | 2.3 |
OSt | 0.5-100 | Y=4.24×104X-1.01×103 | 0.9994 | 0.01 | 0.04 | 84.3 | 6.4 |
StSt | 0.5-100 | Y=2.97×104X+2.54×103 | 0.9983 | 0.04 | 0.10 | 81.6 | 5.8 |
Table 2 Linear ranges, linear equations, correlation coefficients (r2), LODs, LOQs, recoveries and RSDs of the 15 3-MCPDE
Analyte | Linear range/(μg/L) | Linear equation | r2 | LOD/(μg/L) | LOQ/(μg/L) | Recovery/% | RSD (n=9)/% |
---|---|---|---|---|---|---|---|
La | 2.0-100 | Y=2.39×103X+3.32×102 | 0.9991 | 0.47 | 1.25 | 96.0 | 4.6 |
My | 2.0-100 | Y=2.51×103X-3.17×102 | 0.9989 | 0.54 | 1.45 | 97.2 | 5.3 |
P | 2.0-100 | Y=2.61×103X-1.09×102 | 0.9997 | 0.51 | 1.39 | 98.1 | 3.3 |
Ln | 2.0-100 | Y=2.99×103X-4.11×102 | 0.9985 | 0.45 | 1.17 | 98.5 | 5.0 |
L | 2.0-100 | Y=2.63×103X+3.05×102 | 0.9991 | 0.52 | 1.35 | 95.4 | 2.6 |
O | 2.0-100 | Y=2.04×103X -2.52×102 | 0.9993 | 0.68 | 1.74 | 95.8 | 3.3 |
St | 2.0-100 | Y=2.58×103X+3.57×102 | 0.9994 | 0.49 | 1.15 | 93.5 | 2.1 |
PP | 0.5-100 | Y=2.43×104X+1.52×103 | 0.9987 | 0.07 | 0.16 | 96.6 | 2.2 |
LnLn | 0.5-100 | Y=2.99×104X+2.11×103 | 0.9973 | 0.07 | 0.18 | 95.5 | 3.2 |
OLn | 0.5-100 | Y=3.50×104X-2.08×103 | 0.9988 | 0.02 | 0.05 | 94.6 | 2.2 |
LL | 0.5-100 | Y=2.52×104X+1.21×103 | 0.9990 | 0.04 | 0.10 | 91.9 | 2.3 |
OL | 0.5-100 | Y=3.14×104X-1.43×103 | 0.9992 | 0.04 | 0.10 | 87.1 | 1.8 |
OO | 0.5-100 | Y=3.09×104X+2.21×103 | 0.9990 | 0.04 | 0.10 | 86.6 | 2.3 |
OSt | 0.5-100 | Y=4.24×104X-1.01×103 | 0.9994 | 0.01 | 0.04 | 84.3 | 6.4 |
StSt | 0.5-100 | Y=2.97×104X+2.54×103 | 0.9983 | 0.04 | 0.10 | 81.6 | 5.8 |
Fig. 3 (a) Extracted ion current chromatogram, (b) primary mass spectrum and (c) secondary mass spectrum of the compound whose retention time is 7.26 min in the real sample
|
[1] | WANG Xueting, LI Jingjing, JIANG Shan, SHEN Weijian, WANG Yiqian, GU Qiang. Simultaneous determination of monochloropropanediol esters and glycidyl esters in vegetable oils by acidic transesterification-gas chromatography-mass spectrometry [J]. Chinese Journal of Chromatography, 2022, 40(2): 198-205. |
[2] | HOU Jing, CHEN Dan, TU Fengqin, YANG Ming, WANG Mengying, LIU Mengting. Determination of 197 pesticide residues in edible vegetable oil by gas chromatography-time-of-flight mass spectrometry [J]. Chinese Journal of Chromatography, 2021, 39(11): 1261-1272. |
[3] | ZHAO Huinan, ZHANG Yanxia, XUE Xia, DAI Kun, ZHENG Wenjing, MA Cheng, ZHU Jianhua, LIU Yanming, ZHANG Feng. Analysis of nine antioxidants in vegetable oils by high performance liquid chromatography [J]. Chinese Journal of Chromatography, 2020, 38(7): 841-846. |
[4] | LI Shuangqing, LI Xiaomin, ZHANG Qinghe. Advances in the development of detection techniques for mycotoxins in vegetable oil [J]. Chinese Journal of Chromatography, 2019, 37(6): 569-580. |
[5] | WANG Hong, SHEN Weijian, WU Bin, YU Keyao, JIANG Shan, LU Huiyuan, HU Guoshen, WANG Yiqian, GAO Ling, SONG Jieming. Determination of organo-tin residues in edible vegetable oil by positive chemical ionization-gas chromatography-mass spectrometry [J]. Chinese Journal of Chromatography, 2019, 37(1): 21-26. |
[6] | SHEN Weijian, WU Bin, WANG Hong, WANG Xiaoyan, YU Keyao, LU Huiyuan, HU Guoshen, LI Jingjing. Determination of five acylpyrazole pesticide residues in edible vegetable oils using gas chromatography-negative chemical ionization-mass spectrometry [J]. Chinese Journal of Chromatography, 2019, 37(1): 27-31. |
[7] | JIN Xiangzi, KAW Han Yeong, WANG Zhao, ZOU Yilin, LI Wanying, GUO Ziyu, SUN Huaze, ZHAO Jinhua, LI Donghao. One-step extraction method of phthalate esters in vegetable oils [J]. Chinese Journal of Chromatography, 2018, 36(2): 173-178. |
[8] | PENG Zumao, ZHU Li, DENG Mengya, ZHANG Xieguang, ZHENG Yuhui. Simultaneous determination of 14 nutrients in vegetable oils by ultra high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2018, 36(11): 1140-1146. |
[9] | LIN Chunhua, XIE Xianqing, FAN Naili, TU Yuanhong, CHEN Yan, LIAO Weilin. Fast analysis of common fatty acids in edible vegetable oils by ultra-performance convergence chromatography-mass spectrometry [J]. Chinese Journal of Chromatography, 2015, 33(4): 397-402. |
[10] | XU Juan, WANG Lan, HUANG Huajun, CHEN Jie, CHEN Wenrui, XIANG Dapeng. Low temperature freezing followed by dispersive solid phase extraction for the determination of 104 pesticide residues in vegetable oils using ultra-performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2015, 33(3): 242-249. |
[11] | DING Liping, CAI Chunping, WANG Danhong. Determination of indicator polychlorinated biphenyls in vegetable oils by double clean-up-gas chromatography [J]. Chinese Journal of Chromatography, 2014, 32(11): 1266-1270. |
[12] | ZHENG Yueming1,2, FENG Feng2, GUO Wei2, CHU Xiaogang2, PAN Jiarong1,3*, JIA Wei2. Determination of fatty acids in vegetable oils using comprehensive two-dimensional gas chromatography coupled to quadropole mass spectrometry [J]. Chinese Journal of Chromatography, 2012, 30(11): 1166-1171. |
[13] | YE Ruihong1*, SU Jianfeng2. Determination of 61 organophosphorous pesticide residues in fruits, vegetables, milk, vegetable oils and animal muscles by dispersive solid-phase extraction and ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2011, 29(07): 618-623. |
[14] |
DONG Xinyan, YANG Yiwen, REN Qilong.
Progress in the Determination of Trace Polycyclic Aromatic Hydrocarbons in Complex Matrices [J]. Chinese Journal of Chromatography, 2005, 23(6): 609-615. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||