Chinese Journal of Chromatography ›› 2020, Vol. 38 ›› Issue (3): 356-361.DOI: 10.3724/SP.J.1123.2019.09010
TIAN Miaomiao1, LIU Xin2, YANG Li2,*()
Received:
2019-09-09
Online:
2020-03-08
Published:
2020-12-10
Contact:
YANG Li
Supported by:
TIAN Miaomiao, LIU Xin, YANG Li. Simultaneous determination of inorganic anions and cations in wine by capillary electrophoresis-indirect ultraviolet detection with ionic liquid as background electrolyte[J]. Chinese Journal of Chromatography, 2020, 38(3): 356-361.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chrom-china.com/EN/10.3724/SP.J.1123.2019.09010
Fig. 1 Schematic diagram for simultaneous detection of anions and cations by capillary electrophoresis-indirect UV detection with ionic liquid as background electrolyte
Fig. 2 Effect of [EMIm]TS concentrations on the (a) peak areas and (b) resolutions of the eight inorganic ions [EMIm]TS: 1-ethyl-3-methylimidazolium p-toluenesulfonate. Separation voltage: -8 kV; injection: hydrodynamic (13 cm for 10 s at the cathodic end and 10 cm for 3 s at the anodic end); capillary: 10 cm from the anodic end and 30 cm from the cathodic end of the capillary to the detector; detection wavelength: 214 nm; temperature: 25 ℃.
Fig. 3 Effect of separation voltages on the (a) peak areas and (b) resolutions of the eight inorganic ions. Running buffer: 20 mmol/L [EMIm]TS. The other conditions were the same as that in Fig. 2.
Ion | N/(plate/m) | Linear equation | Linear range/(g/L) | R2 | LOD/(mg/L) | LOQ/(mg/L) | Intra-day RSDs (n=5)/% | Inter-day RSDs (n=5)/% | |||
Migration time | Peak area | Migration time | Peak area | ||||||||
y: peak area; x: mass concentration, g/L. | |||||||||||
K+ | 8909 | y=1.06x-0.54 | 0.05-0.7 | 0.983 | 212.5 | 37.3 | 1.5 | 3.1 | 1.6 | 3.5 | |
Ca2+ | 11089 | y=6.95x-6.51 | 0.01-0.6 | 0.995 | 3.1 | 9.2 | 1.4 | 4.0 | 1.8 | 4.3 | |
Na+ | 14560 | y=8.73x-4.37 | 0.005-0.6 | 0.991 | 2.3 | 6.8 | 2.2 | 3.0 | 2.5 | 3.8 | |
Mg2+ | 14630 | y=19.33x-15.22 | 0.005-0.6 | 0.993 | 1.4 | 4.1 | 1.1 | 6.5 | 1.5 | 6.8 | |
Li+ | 24239 | y=25.40x-7.42 | 0.005-0.5 | 0.988 | 1.2 | 3.4 | 1.3 | 4.4 | 2.1 | 4.7 | |
Cl- | 12159 | y=8.39x-3.67 | 0.01-0.6 | 0.987 | 2.5 | 7.3 | 1.4 | 1.5 | 1.9 | 2.6 | |
SO42- | 23920 | y=7.83x-5.03 | 0.01-0.6 | 0.983 | 2.8 | 8.2 | 1.2 | 4.3 | 2.3 | 3.9 | |
ClO3- | 29709 | y=4.47x-2.42 | 0.01-0.6 | 0.992 | 3.9 | 11.9 | 1.6 | 2.8 | 2.2 | 3.1 |
Table 1 Column efficiencies (N), linear equations, linear ranges, correlation coefficients (R2), LODs, LOQs, and intra-day and inter-day RSDs of migration time and peak areas for the eight inorganic ions
Ion | N/(plate/m) | Linear equation | Linear range/(g/L) | R2 | LOD/(mg/L) | LOQ/(mg/L) | Intra-day RSDs (n=5)/% | Inter-day RSDs (n=5)/% | |||
Migration time | Peak area | Migration time | Peak area | ||||||||
y: peak area; x: mass concentration, g/L. | |||||||||||
K+ | 8909 | y=1.06x-0.54 | 0.05-0.7 | 0.983 | 212.5 | 37.3 | 1.5 | 3.1 | 1.6 | 3.5 | |
Ca2+ | 11089 | y=6.95x-6.51 | 0.01-0.6 | 0.995 | 3.1 | 9.2 | 1.4 | 4.0 | 1.8 | 4.3 | |
Na+ | 14560 | y=8.73x-4.37 | 0.005-0.6 | 0.991 | 2.3 | 6.8 | 2.2 | 3.0 | 2.5 | 3.8 | |
Mg2+ | 14630 | y=19.33x-15.22 | 0.005-0.6 | 0.993 | 1.4 | 4.1 | 1.1 | 6.5 | 1.5 | 6.8 | |
Li+ | 24239 | y=25.40x-7.42 | 0.005-0.5 | 0.988 | 1.2 | 3.4 | 1.3 | 4.4 | 2.1 | 4.7 | |
Cl- | 12159 | y=8.39x-3.67 | 0.01-0.6 | 0.987 | 2.5 | 7.3 | 1.4 | 1.5 | 1.9 | 2.6 | |
SO42- | 23920 | y=7.83x-5.03 | 0.01-0.6 | 0.983 | 2.8 | 8.2 | 1.2 | 4.3 | 2.3 | 3.9 | |
ClO3- | 29709 | y=4.47x-2.42 | 0.01-0.6 | 0.992 | 3.9 | 11.9 | 1.6 | 2.8 | 2.2 | 3.1 |
Sample | Contents/(g/L) | |||||||
K+ | Ca2+ | Na+ | Mg2+ | Li+ | Cl- | SO42- | ClO3- | |
-: no data. | ||||||||
Wine 1 | 0.447 | 0.038 | 0.01 | 0.117 | - | 0.055 | 0.16 | - |
Wine 2 | 0.642 | 0.043 | 0.023 | 0.169 | - | - | 0.277 | - |
Wine 3 | 0.219 | 0.019 | 0.008 | 0.048 | - | 0.047 | 0.208 | - |
Table 2 Contents of the eight inorganic ions in wine samples
Sample | Contents/(g/L) | |||||||
K+ | Ca2+ | Na+ | Mg2+ | Li+ | Cl- | SO42- | ClO3- | |
-: no data. | ||||||||
Wine 1 | 0.447 | 0.038 | 0.01 | 0.117 | - | 0.055 | 0.16 | - |
Wine 2 | 0.642 | 0.043 | 0.023 | 0.169 | - | - | 0.277 | - |
Wine 3 | 0.219 | 0.019 | 0.008 | 0.048 | - | 0.047 | 0.208 | - |
Fig. 5 Electropherograms of inorganic ions in three kinds of wine samples Running buffer: 20 mmol/L [EMIm]TS. The other conditions were the same as that in Fig. 2.
Sample | Ion | Recoveries/% (RSDs/%) (n=5) | ||
0.05 g/L | 0.2 g/L | 0.4 g/L | ||
Wine 1 | K+ | 98.7 (1.2) | 98.7 (2.9) | 101.8 (1.8) |
Ca2+ | 110.1 (4.5) | 97.1 (4.7) | 102.7 (2.0) | |
Na+ | 110.5 (3.8) | 100.1 (1.1) | 95.1 (3.6) | |
Mg2+ | 104.1 (2.9) | 96.9 (1.5) | 99.6 (4.3) | |
Li+ | 101.1 (2.3) | 99.6 (1.4) | 98.9 (1.9) | |
Cl- | 107.7 (1.2) | 101.1 (2.7) | 99.2 (3.1) | |
SO42- | 103.2 (3.6) | 102.1 (1.5) | 96.9 (4.2) | |
ClO3- | 107.6 (2.4) | 104.4 (4.8) | 95.2 (1.5) | |
Wine 2 | K+ | 96.1 (2.4) | 94.1 (1.8) | 95.1 (2.8) |
Ca2+ | 95.1 (1.2) | 103.8 (2.6) | 96.1 (2.6) | |
Na+ | 102.1 (2.3) | 92.8 (2.3) | 101.8 (3.5) | |
Mg2+ | 108.2 (1.8) | 110.3 (2.8) | 104.2 (1.1) | |
Li+ | 98.7 (2.3) | 95.1 (3.0) | 95.6 (2.3) | |
Cl- | 96.7 (1.3) | 94.7 (4.5) | 90.1 (2.8) | |
SO42- | 104.5 (1.1) | 92.1 (3.1) | 93.8 (2.7) | |
ClO3- | 94.3 (2.2) | 90.1 (3.9) | 107.8 (3.7) | |
Wine 3 | K+ | 95.3 (2.0) | 91.6 (2.6) | 93.7 (2.6) |
Ca2+ | 94.6 (3.4) | 93.6 (3.1) | 95.1 (3.1) | |
Na+ | 90.1 (1.5) | 101.7 (2.0) | 96.3 (2.5) | |
Mg2+ | 92.1 (2.6) | 93.8 (1.7) | 103.3 (2.7) | |
Li+ | 104.3 (2.0) | 92.4 (2.3) | 96.1 (3.2) | |
Cl- | 106.2 (2.4) | 104.6 (2.1) | 94.1 (3.5) | |
SO42- | 110.2 (2.2) | 91.3 (3.3) | 102.3 (2.8) | |
ClO3- | 95.3 (1.3) | 102.7 (2.9) | 92.6 (2.6) |
Table 3 Recoveries and RSDs of the eight inorganic ions spiked in wine samples (n=5)
Sample | Ion | Recoveries/% (RSDs/%) (n=5) | ||
0.05 g/L | 0.2 g/L | 0.4 g/L | ||
Wine 1 | K+ | 98.7 (1.2) | 98.7 (2.9) | 101.8 (1.8) |
Ca2+ | 110.1 (4.5) | 97.1 (4.7) | 102.7 (2.0) | |
Na+ | 110.5 (3.8) | 100.1 (1.1) | 95.1 (3.6) | |
Mg2+ | 104.1 (2.9) | 96.9 (1.5) | 99.6 (4.3) | |
Li+ | 101.1 (2.3) | 99.6 (1.4) | 98.9 (1.9) | |
Cl- | 107.7 (1.2) | 101.1 (2.7) | 99.2 (3.1) | |
SO42- | 103.2 (3.6) | 102.1 (1.5) | 96.9 (4.2) | |
ClO3- | 107.6 (2.4) | 104.4 (4.8) | 95.2 (1.5) | |
Wine 2 | K+ | 96.1 (2.4) | 94.1 (1.8) | 95.1 (2.8) |
Ca2+ | 95.1 (1.2) | 103.8 (2.6) | 96.1 (2.6) | |
Na+ | 102.1 (2.3) | 92.8 (2.3) | 101.8 (3.5) | |
Mg2+ | 108.2 (1.8) | 110.3 (2.8) | 104.2 (1.1) | |
Li+ | 98.7 (2.3) | 95.1 (3.0) | 95.6 (2.3) | |
Cl- | 96.7 (1.3) | 94.7 (4.5) | 90.1 (2.8) | |
SO42- | 104.5 (1.1) | 92.1 (3.1) | 93.8 (2.7) | |
ClO3- | 94.3 (2.2) | 90.1 (3.9) | 107.8 (3.7) | |
Wine 3 | K+ | 95.3 (2.0) | 91.6 (2.6) | 93.7 (2.6) |
Ca2+ | 94.6 (3.4) | 93.6 (3.1) | 95.1 (3.1) | |
Na+ | 90.1 (1.5) | 101.7 (2.0) | 96.3 (2.5) | |
Mg2+ | 92.1 (2.6) | 93.8 (1.7) | 103.3 (2.7) | |
Li+ | 104.3 (2.0) | 92.4 (2.3) | 96.1 (3.2) | |
Cl- | 106.2 (2.4) | 104.6 (2.1) | 94.1 (3.5) | |
SO42- | 110.2 (2.2) | 91.3 (3.3) | 102.3 (2.8) | |
ClO3- | 95.3 (1.3) | 102.7 (2.9) | 92.6 (2.6) |
|
[1] | WEN Yalun, SHAO Yuchen, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2022 [J]. Chinese Journal of Chromatography, 2023, 41(5): 377-385. |
[2] | MA Yao, HU Yangyang, ZHENG Liting, CHEN Li, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2021 [J]. Chinese Journal of Chromatography, 2022, 40(7): 591-599. |
[3] | CHI Zhongmei, YANG Li. Advances in chiral separation and analysis by capillary electrophoresis-mass spectrometry [J]. Chinese Journal of Chromatography, 2022, 40(6): 509-519. |
[4] | LI Chao, WANG Qi, ZHANG Zhaoxiang. Field-amplified sample injection and graphene quantum dot dual preconcentration in the analysis of melamine and dicyandiamide by capillary electrophoresis [J]. Chinese Journal of Chromatography, 2022, 40(3): 289-295. |
[5] | MU Yingqi, WU Yixuan, WANG Xiao, HU Liming, KE Runhui. Determination of 10 organic acids in alcoholic products by ion chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2022, 40(12): 1128-1135. |
[6] | ZHANG Piwang, YANG Liye, LIU Qiang, LU Shangui, LIANG Ying, ZHANG Min. Multimaterial 3D-printed contactless conductivity/laser-induced fluorescence dual-detection cell for capillary electrophoresis [J]. Chinese Journal of Chromatography, 2021, 39(8): 921-926. |
[7] | JIANG Haowen, LI Jian, TAN Zhiqiang, GUO Yingying, LIU Yanwei, HU Ligang, YIN Yongguang, CAI Yong, JIANG Guibin. Application of non-stationary phase separation hyphenated with inductively coupled plasma mass spectrometry in the analysis of trace metal-containing nanoparticles in the environment [J]. Chinese Journal of Chromatography, 2021, 39(8): 855-869. |
[8] | HAN Shimiao, ZHAO Liping, YANG Ge, QU Feng. Efficient screening for 8-oxoguanine DNA glycosylase binding aptamers via capillary electrophoresis [J]. Chinese Journal of Chromatography, 2021, 39(7): 721-729. |
[9] | WEI Bo, MA Yao, TIAN Wenzhe, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2020 [J]. Chinese Journal of Chromatography, 2021, 39(6): 559-566. |
[10] | QIN Shaojie, BAI Yu, LIU Huwei. Methods and applications of single-cell proteomics analysis based on mass spectrometry [J]. Chinese Journal of Chromatography, 2021, 39(2): 142-151. |
[11] | WANG Yuanyu, ZHANG Ruihua, ZHANG Qiang, CAO Chengxi, FAN Liuyin, LIU Weiwen. Determination of two quaternary ammonium salts in disinfector by portable capillary electrophoresis device based on smartphone [J]. Chinese Journal of Chromatography, 2021, 39(11): 1151-1156. |
[12] | TIAN Shanshan, LIU Ranran, QIAN Xiaolong, GUO Xiaojing, ZHANG Kai. Extraction and isolation of histones from paraffin-embedded tissues and quantitative analysis of post-translational modifications [J]. Chinese Journal of Chromatography, 2021, 39(10): 1094-1101. |
[13] | BAI Yu, FAN Yufan, GE Guangbo, WANG Fangjun. Advances in chromatography in the study of drug-plasma protein interactions [J]. Chinese Journal of Chromatography, 2021, 39(10): 1077-1085. |
[14] | ZHAO Yi, MA Yao, WEI Bo, TIAN Wenzhe, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2019 [J]. Chinese Journal of Chromatography, 2020, 38(9): 986-992. |
[15] | LIN Changying, DING Xiaojing. Application, development, and challenges of capillary electrophoresis in disease prevention and control [J]. Chinese Journal of Chromatography, 2020, 38(9): 999-1012. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||