Chinese Journal of Chromatography ›› 2020, Vol. 38 ›› Issue (4): 383-391.DOI: 10.3724/SP.J.1123.2019.08026
• Reviews • Previous Articles Next Articles
ZHAO Xingyun1,2, ZHANG Hongyan1, NIU Huan1,2, WU Ren’an1,*()
Received:
2019-08-25
Online:
2020-04-08
Published:
2020-12-10
Contact:
WU Ren’an
Supported by:
CLC Number:
ZHAO Xingyun, ZHANG Hongyan, NIU Huan, WU Ren’an. Research progress in hydrothermal carbon materials for separation and analysis[J]. Chinese Journal of Chromatography, 2020, 38(4): 383-391.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chrom-china.com/EN/10.3724/SP.J.1123.2019.08026
Fig. 1 Schematic growth model for carbon spheres derived from glucose[3] First, glucose is decomposed into small molecules, and then the hydrothermal carbon materials with a carbonized core and a hydrophilic surface are formed by polymerization.
Raw material | Synthesis condition | Structure characteristics | Application | Reference |
---|---|---|---|---|
Glucose | 160-180 ℃, 4-20 h | 200-1500 nm; C=O, OH | encapsulate nanoparticles | [3] |
Fructose | 120-140 ℃, 0.5-2 h | 200-400 nm; containing C=C, C=O, OH | energy storage | [4] |
Starch | 200 ℃, 12 or 48 h; add Fe2O3 | 2-5 μm; carbon hollow spheres and | carbon fuel cell | [9] |
and Fe(NH4)2(SO4)2 | nanotubes | |||
Cellulose | 200-250 ℃, 2 or 4 h | 2-10 μm; oxygen-containing groups | catalyst | [7] |
Cyclodextrin | 180 ℃, 24 h; add F127 | 0.1-1 μm; hollow mesopore | lithium ion battery | [41] |
Sucrose | 190 ℃, 5 h; KOH activation | 100-150 nm; high BET surface area | supercapacitor | [35] |
Glucose | 180-200 ℃; add sodium polyacrylate | 600-900 nm; monodispersed | catalyst support | [5] |
Glucose | 150 ℃, 10 h; add NH3 | 2-3 μm; amino groups | water purification | [20] |
Glucose | 190 ℃, 16 h; add sodium polyacrylate | 250-500 nm; carboxyl groups | adsorption of heavy metals | [18] |
Glucose | 180 ℃, 24 h; add 4-aminoacetophenone | 0.1-1 μm; oxime groups | adsorption of uranyl ions | [40] |
Sucrose | 180-250 ℃; add sodium polyacrylate | 1-5 μm; monodispersed | ion separation | [42] |
Cyclodextrin | 170 ℃, 24 h | 5 μm; hydrophilic carbon shell | polar compounds separation | [43] |
Glucose | 180 ℃, 6 h; add VPA, Ti(SO4)2 | 1-8 μm; phosphate group, Ti-IMAC | phosphopeptides enrichment | [44] |
Glucose | 180 ℃, 6 h; add MSA, MPC | 200-1000 nm; MSA, MPC group | glycopeptides enrichment | [45] |
Table 1 Preparations and applications of hydrothermal carbon materials
Raw material | Synthesis condition | Structure characteristics | Application | Reference |
---|---|---|---|---|
Glucose | 160-180 ℃, 4-20 h | 200-1500 nm; C=O, OH | encapsulate nanoparticles | [3] |
Fructose | 120-140 ℃, 0.5-2 h | 200-400 nm; containing C=C, C=O, OH | energy storage | [4] |
Starch | 200 ℃, 12 or 48 h; add Fe2O3 | 2-5 μm; carbon hollow spheres and | carbon fuel cell | [9] |
and Fe(NH4)2(SO4)2 | nanotubes | |||
Cellulose | 200-250 ℃, 2 or 4 h | 2-10 μm; oxygen-containing groups | catalyst | [7] |
Cyclodextrin | 180 ℃, 24 h; add F127 | 0.1-1 μm; hollow mesopore | lithium ion battery | [41] |
Sucrose | 190 ℃, 5 h; KOH activation | 100-150 nm; high BET surface area | supercapacitor | [35] |
Glucose | 180-200 ℃; add sodium polyacrylate | 600-900 nm; monodispersed | catalyst support | [5] |
Glucose | 150 ℃, 10 h; add NH3 | 2-3 μm; amino groups | water purification | [20] |
Glucose | 190 ℃, 16 h; add sodium polyacrylate | 250-500 nm; carboxyl groups | adsorption of heavy metals | [18] |
Glucose | 180 ℃, 24 h; add 4-aminoacetophenone | 0.1-1 μm; oxime groups | adsorption of uranyl ions | [40] |
Sucrose | 180-250 ℃; add sodium polyacrylate | 1-5 μm; monodispersed | ion separation | [42] |
Cyclodextrin | 170 ℃, 24 h | 5 μm; hydrophilic carbon shell | polar compounds separation | [43] |
Glucose | 180 ℃, 6 h; add VPA, Ti(SO4)2 | 1-8 μm; phosphate group, Ti-IMAC | phosphopeptides enrichment | [44] |
Glucose | 180 ℃, 6 h; add MSA, MPC | 200-1000 nm; MSA, MPC group | glycopeptides enrichment | [45] |
Fig. 2 Surface quaternized ammonium modified hydrothermal carbon spheres from sucrose for ion chromatography stationary phase[47] Elute: 0.01 mol/L KOH; flow rate: 1 mL/min. CNS: carbonaceous nanospheres; QAP: quaternary ammonium polyelectrolytes.
Fig. 4 Schematic approach for preparation of phosphate-rich carbonaceous spheres by hydrothermal carbonization of glucose and MALDI-TOF MS spectra of phosphopeptides in human serum (a) before and (b) after Ti-IMAC carbon material enrichment[44]HTC: hydrothermal carbon; * denotes phosphopeptides.
|
[1] | ZHOU Ranfeng, ZHANG Huixian, YIN Xiaoli, PENG Xitian. Progress in the application of novel nano-materials to the safety analysis of agricultural products [J]. Chinese Journal of Chromatography, 2023, 41(9): 731-741. |
[2] | HUANG Jianying, XIA Ling, XIAO Xiaohua, LI Gongke. Advances in microchip electrophoresis for the separation and analysis of biological samples [J]. Chinese Journal of Chromatography, 2023, 41(8): 641-650. |
[3] | WEN Yalun, SHAO Yuchen, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2022 [J]. Chinese Journal of Chromatography, 2023, 41(5): 377-385. |
[4] | XIE Weiya, ZHU Xiaohan, MEI Hongcheng, GUO Hongling, LI Yajun, HUANG Yang, QIN Hao, ZHU Jun, HU Can. Applications of functional materials-based solid phase microextraction technique in forensic science [J]. Chinese Journal of Chromatography, 2023, 41(4): 302-311. |
[5] | YE Hanzhang, LIU Tingting, DING Yongli, GU Jingjing, LI Yuhao, WANG Qi, ZHANG Zhan’en, WANG Xuedong. Recent advances in the development and application of effervescence-assisted microextraction techniques [J]. Chinese Journal of Chromatography, 2023, 41(4): 289-301. |
[6] | OUYANG Yilan, YI Lin, QIU Luyun, ZHANG Zhenqing. Advances in heparin structural analysis by chromatography technologies [J]. Chinese Journal of Chromatography, 2023, 41(2): 107-121. |
[7] | LIU Hualin, LI Yanan, ZI Min, CHEN Zheng, DUAN Aihong, YUAN Liming. Separation of chiral compounds using high performance liquid chromatography stationary phase based on covalent organic framework material TpPa-NH2-Glu [J]. Chinese Journal of Chromatography, 2023, 41(2): 187-194. |
[8] | ZHAI Hongwen, MA Hongyu, CAO Meirong, ZHANG Mingxing, MA Junmei, ZHANG Yan, LI Qiang. Application progress of on-line sample preparation techniques coupled with liquid chromatography-mass spectrometry system in the detection of food hazards [J]. Chinese Journal of Chromatography, 2023, 41(12): 1062-1072. |
[9] | YU Tao, CHEN Li, ZHANG Wenmin, ZHANG Lan, LU Qiaomei. Advances in synthesis methods and applications of microporous organic networks for sample preparation [J]. Chinese Journal of Chromatography, 2023, 41(12): 1052-1061. |
[10] | GUO Dongmei, XIA Yiran, Mujeeb ur RAHMAN, WANG Jianzhong, LIU Jiawei, BAI Quan. Preparation of a block copolymer-based temperature-responsive affinity chromatography stationary phase for antibody separation and purification [J]. Chinese Journal of Chromatography, 2023, 41(12): 1045-1051. |
[11] | ZHANG Zhenyong. Chiral capillary gas chromatography for the separation of the enantiomers of 4-chloromethyl-2,2-dimethyl-1,3-dioxolane [J]. Chinese Journal of Chromatography, 2023, 41(12): 1135-1140. |
[12] | NIE Yangyang, YANG Guantao, WANG Haiyan, QIAO Xiaoqiang. Modified styrene-maleic anhydride copolymer-based chromatographic stationary phase for phospholipid separation and analysis [J]. Chinese Journal of Chromatography, 2023, 41(10): 921-928. |
[13] | WANG Guoxiu, CHEN Yonglei, LÜ Wenjuan, CHEN Hongli, CHEN Xingguo. Recent developments in the application of covalent organic frameworks in capillary electrochromatography [J]. Chinese Journal of Chromatography, 2023, 41(10): 835-842. |
[14] | LIU Jin, WU Fan, GAN Lin, JIN Leyi, LIN Zian. Research progress on preparation and applications of covalent organic framework-based chromatographic stationary phases [J]. Chinese Journal of Chromatography, 2023, 41(10): 843-852. |
[15] | ZHENG Kangni, QIN Gaizhao, JIANG Xuefei, ZHANG Junhui, YUAN Liming. Preparation of porous organic cage and its use as chiral stationary phase for capillary electrochromatography [J]. Chinese Journal of Chromatography, 2023, 41(10): 929-936. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||