Chinese Journal of Chromatography ›› 2020, Vol. 38 ›› Issue (4): 430-437.DOI: 10.3724/SP.J.1123.2019.08019
• Article • Previous Articles Next Articles
LOU Xuhua, ZUO Huiying, WANG Yuan, ZHAO Wenjie()
Received:
2019-08-20
Online:
2020-04-08
Published:
2020-12-10
Contact:
ZHAO Wenjie
Supported by:
CLC Number:
LOU Xuhua, ZUO Huiying, WANG Yuan, ZHAO Wenjie. Preparation and chromatographic evaluation of a polymer-based stationary phase for weak anion-exchange/hydrophilic interaction[J]. Chinese Journal of Chromatography, 2020, 38(4): 430-437.
Fig. 2 Solid-state 13C CP/MAS NMR spectra of Sil-PolyCOOH material 13C CP/MAS NMR: 13C cross polarization magic angle spinning nuclear magnetic resonance spectroscopy; δ: chemical shift.
Fig. 4 Separation of nucleosides and nucleic bases compounds on Sil-polyCOOH column Mobile phase: CH3CN-ammonium acetate (85∶15, v/v, pH 3.26); detection wavelength: 265 nm. Peak Nos.: 1. thymidine; 2. uridine; 3. inosine; 4. adenine; 5. 2-NH2-adenine nucleoside; 6. cytidine; 7. cytosine.
Fig. 5 Influence of water content in the mobile phase on the retention of nucleosides and nucleic bases k: retention factor; CB: water content in the mobile phase.
Solute | Retention model (1) | Retention model (2) | Retention model (3) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
lg kw | -S | R2 | lg kB | -AS/nB | R2 | a | b | c | R2 | |||
Thymidine | 0.109 | 3.177 | 0.975 | -1.411 | 0.913 | 0.839 | 2.575 | 0.894 | -11.312 | 0.986 | ||
Uridine | 0.276 | 3.389 | 0.980 | -1.346 | 0.976 | 0.846 | 3.003 | 0.911 | -11.873 | 0.991 | ||
Inosine | 0.587 | 3.723 | 0.965 | -1.204 | 1.082 | 0.853 | 3.114 | 0.679 | -11.608 | 0.964 | ||
Adenine | 0.539 | 2.767 | 0.970 | -0.826 | 0.847 | 0.973 | -1.237 | -0.953 | -2.109 | 0.988 | ||
2-NH2-adenine | 0.686 | 3.147 | 0.980 | -0.861 | 0.957 | 0.967 | -0.646 | -0.857 | -3.416 | 0.992 | ||
Cytidine | 0.870 | 3.763 | 0.987 | -0.977 | 1.140 | 0.965 | -0.279 | -0.878 | -4.740 | 0.995 | ||
Cytosine | 0.874 | 3.215 | 0.947 | -0.718 | 0.992 | 0.968 | -1.513 | -1.357 | -1.336 | 0.972 |
Table 1 Linear regression coefficients based on retention models (1), (2), and (3)
Solute | Retention model (1) | Retention model (2) | Retention model (3) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
lg kw | -S | R2 | lg kB | -AS/nB | R2 | a | b | c | R2 | |||
Thymidine | 0.109 | 3.177 | 0.975 | -1.411 | 0.913 | 0.839 | 2.575 | 0.894 | -11.312 | 0.986 | ||
Uridine | 0.276 | 3.389 | 0.980 | -1.346 | 0.976 | 0.846 | 3.003 | 0.911 | -11.873 | 0.991 | ||
Inosine | 0.587 | 3.723 | 0.965 | -1.204 | 1.082 | 0.853 | 3.114 | 0.679 | -11.608 | 0.964 | ||
Adenine | 0.539 | 2.767 | 0.970 | -0.826 | 0.847 | 0.973 | -1.237 | -0.953 | -2.109 | 0.988 | ||
2-NH2-adenine | 0.686 | 3.147 | 0.980 | -0.861 | 0.957 | 0.967 | -0.646 | -0.857 | -3.416 | 0.992 | ||
Cytidine | 0.870 | 3.763 | 0.987 | -0.977 | 1.140 | 0.965 | -0.279 | -0.878 | -4.740 | 0.995 | ||
Cytosine | 0.874 | 3.215 | 0.947 | -0.718 | 0.992 | 0.968 | -1.513 | -1.357 | -1.336 | 0.972 |
Fig. 7 Van’t Hoff plots for model compounds on Sil-polyCOOH column Mobile phase: CH3CN-ammonium acetate (85∶15, v/v, pH 3.26); detection wavelength: 265 nm. T: thermodynamic temperature.
Analyte | ΔH/ (kJ/mol) | ΔS/ (J/(mol·K)) | Correlation coefficient |
---|---|---|---|
Thymidine | -7.67 | -35.25 | 0.9996 |
Uridine | -8.05 | -32.91 | 0.9988 |
Inosine | -7.56 | -31.23 | 0.9987 |
Adenine | -7.30 | -27.82 | 0.9998 |
2-NH2-adenine | -7.96 | -27.89 | 0.9942 |
Cytidine | -7.74 | -25.31 | 0.9983 |
Cytosine | -9.03 | -28.14 | 0.9977 |
Table 2 Thermodynamic parameters for seven model compounds on Sil-polyCOOH column
Analyte | ΔH/ (kJ/mol) | ΔS/ (J/(mol·K)) | Correlation coefficient |
---|---|---|---|
Thymidine | -7.67 | -35.25 | 0.9996 |
Uridine | -8.05 | -32.91 | 0.9988 |
Inosine | -7.56 | -31.23 | 0.9987 |
Adenine | -7.30 | -27.82 | 0.9998 |
2-NH2-adenine | -7.96 | -27.89 | 0.9942 |
Cytidine | -7.74 | -25.31 | 0.9983 |
Cytosine | -9.03 | -28.14 | 0.9977 |
Fig. 8 Separation of saccharides on Sil-polyCOOH column Mobile phase: CH3CN/H2O (90∶10, v/v); ELSD (evaporative light scattering detection): gas pressure, 2×105 Pa; tube temperature, 80 ℃; gain, 30.
Fig. 9 Separation of paraquat and diquat on Sil-polyCOOH column Mobile phase conditions: ACN/15 mmol/L CH3COONH4 (75∶25, v/v); detection wavelength: 257 nm.
|
[1] | LIU Yu, XING Jiali, SHEN Jian, BI Xiaoli, MAO Lingyan, XU Xiaorong, ZHANG Shufen, LOU Yongjiang, WU Xi, MU Yinghua. Simultaneous determination of six rare sugars in solid foods by high performance liquid chromatography-evaporative light-scattering detection [J]. Chinese Journal of Chromatography, 2023, 41(9): 781-788. |
[2] | SHI Hongfei, XU Bopeng, XU Chengxin, ZHOU Xiuqi, XU Hongfu. Rapid extraction and detection of five alkaloids in dried khat by solvent extraction-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(9): 771-780. |
[3] | QIAN Zhengming, WU Mengqi, TAN Guoying, JIN Liling, LI Ning, XIE Juying. Rapid determination of aesculin and aesculetin in Fraxini Cortex by high performance liquid chromatography-ultraviolet at equal absorption wavelength [J]. Chinese Journal of Chromatography, 2023, 41(8): 690-697. |
[4] | WU Pingping, LIN Renyi, HUANG Liying. Determination of three plant growth regulators in Dendrobium officinale and Anoectochilus roxburghii by three-phase hollow fiber liquid phase microextraction- high performance liquid chromatography [J]. Chinese Journal of Chromatography, 2023, 41(8): 683-689. |
[5] | WANG Xiaoqing, CUI Jian, GU Yiming, WANG Shuo, ZHOU Jin, WANG Shudong. One-pot synthesis of a poly(styrene-acrylic acid) copolymer-modified silica stationary phase and its applications in mixed-mode liquid chromatography [J]. Chinese Journal of Chromatography, 2023, 41(7): 562-571. |
[6] | NING Xiaopan, YAO Qian, XU Zhongxiang, YIN Yao, LIU Han, ZHANG Xiaoyan, DING Tao, ZHANG Yong, HOU Yu, WANG Mengru, WU Lina, TANG Qiting. Determination of seven paraben preservatives in aquatic seasoning using solid-phase extraction coupled with high performance liquid chromatography [J]. Chinese Journal of Chromatography, 2023, 41(6): 513-519. |
[7] | DU Xinxin, WANG Yinpeng, XIAO Wei, ZHU Jingbo. Simultaneous determination of five lignans from Schisandra chinensis by matrix solid-phase dispersion extraction-high performance liquid chromatography [J]. Chinese Journal of Chromatography, 2023, 41(3): 257-264. |
[8] | XUE Kunpeng, YU Lingyu, REN Xingfa, TU Bingfang, CHEN Chao, XU Ting, HE Huan, HU Shuai. Determination of 15 carbonyl compounds in soil using improved solid phase extraction-high performance liquid chromatography [J]. Chinese Journal of Chromatography, 2023, 41(3): 265-273. |
[9] | LIU Hualin, LI Yanan, ZI Min, CHEN Zheng, DUAN Aihong, YUAN Liming. Separation of chiral compounds using high performance liquid chromatography stationary phase based on covalent organic framework material TpPa-NH2-Glu [J]. Chinese Journal of Chromatography, 2023, 41(2): 187-194. |
[10] | HUANG Yongpeng, TANG Hui, MENG Xiangyan, ZHONG Hui, SONG Yunyang, CHEN Bo, ZOU Zhiyun. Rapid and simultaneous determination of two immunosuppressants in whole blood by high performance liquid chromatography [J]. Chinese Journal of Chromatography, 2023, 41(2): 152-159. |
[11] | NIE Yangyang, YANG Guantao, WANG Haiyan, QIAO Xiaoqiang. Modified styrene-maleic anhydride copolymer-based chromatographic stationary phase for phospholipid separation and analysis [J]. Chinese Journal of Chromatography, 2023, 41(10): 921-928. |
[12] | WANG Guoxiu, CHEN Yonglei, LÜ Wenjuan, CHEN Hongli, CHEN Xingguo. Recent developments in the application of covalent organic frameworks in capillary electrochromatography [J]. Chinese Journal of Chromatography, 2023, 41(10): 835-842. |
[13] | LIU Jin, WU Fan, GAN Lin, JIN Leyi, LIN Zian. Research progress on preparation and applications of covalent organic framework-based chromatographic stationary phases [J]. Chinese Journal of Chromatography, 2023, 41(10): 843-852. |
[14] | YAN Meiting, LONG Wenwen, TAO Xueping, WANG Dan, XIA Zhining, FU Qifeng. Research progress on the construction and applications of metal-organic frameworks in chromatographic stationary phases [J]. Chinese Journal of Chromatography, 2023, 41(10): 879-890. |
[15] | SONG Chunying, JIN Gaowa, YU Dongping, XIA Donghai, FENG Jing, GUO Zhimou, LIANG Xinmiao. Development progress of stationary phase for supercritical fluid chromatography and related application in natural products [J]. Chinese Journal of Chromatography, 2023, 41(10): 866-878. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 106
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||