Chinese Journal of Chromatography ›› 2020, Vol. 38 ›› Issue (6): 621-626.DOI: 10.3724/SP.J.1123.2019.10016
Previous Articles Next Articles
Lü Ying1,2, ZHOU Zhigang3, CHEN Si2,4,*(), ZHANG Xiaojun2,4
Received:
2019-10-16
Online:
2020-06-08
Published:
2020-12-10
Contact:
CHEN Si
Supported by:
Lü Ying, ZHOU Zhigang, CHEN Si, ZHANG Xiaojun. Progress on the metabolic rules and detection methods for okadaic acid related toxins in biological samples[J]. Chinese Journal of Chromatography, 2020, 38(6): 621-626.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chrom-china.com/EN/10.3724/SP.J.1123.2019.10016
Year | Location of outbreak | Patients involved | Frequency | Ref. |
1961-1981 | Netherlands | not mentioned | 5 | [ |
1970-2004 | Chile | >1500 | >4 | [ |
1976-1982 | Japan | >1300 | >34 | [ |
1978-1981 | Spain | >5000 | >3 | [ |
1980-2011 | USA | >3496 | 5 | [ |
1984-2009 | France | >12000 | >13 | [ |
1990-2002 | Denmark | >800 | >3 | [ |
1990-2011 | Canada | 78 | 2 | [ |
1997-2019 | UK | 125 | 3 | [ |
1997-2000 | Australia | 123 | 3 | [ |
2000 | Greece | 120 | 1 | [ |
2002 | Belgium | 403 | 1 | [ |
2011 | China | >200 | 1 | [ |
2019 | Brazil | 9 | 1 | [ |
Table 1 Reported cases of human poisoning of diarrhetic shellfish poison (DSP)
Year | Location of outbreak | Patients involved | Frequency | Ref. |
1961-1981 | Netherlands | not mentioned | 5 | [ |
1970-2004 | Chile | >1500 | >4 | [ |
1976-1982 | Japan | >1300 | >34 | [ |
1978-1981 | Spain | >5000 | >3 | [ |
1980-2011 | USA | >3496 | 5 | [ |
1984-2009 | France | >12000 | >13 | [ |
1990-2002 | Denmark | >800 | >3 | [ |
1990-2011 | Canada | 78 | 2 | [ |
1997-2019 | UK | 125 | 3 | [ |
1997-2000 | Australia | 123 | 3 | [ |
2000 | Greece | 120 | 1 | [ |
2002 | Belgium | 403 | 1 | [ |
2011 | China | >200 | 1 | [ |
2019 | Brazil | 9 | 1 | [ |
Toxin classifica- tion | Analyte | Matrix | Extraction solvent | Purification method | Analytical column | Quantitative range/ (ng/mL) | LOD/ (ng/mL) | Ref. |
TTX: tetrodotoxin; STX: saxitoxin; NEO: neosaxitoxin; DA: domoic acid; MC: microcystin; MeOH: methanol; ACN: acetonitrile; AA: acetic acid; SCX: strong citation exchange; CBA: carboxyl bonded amide; PCX: polymer citation exchange; PA: polyamide; WCX: weak citation exchange; CCX: carboxyl citation exchange; PAX: polymer anion exchange; -: not mentioned. | ||||||||
DSP | OA, DTX-1, DTX-2 | urine | Vsample:VMeOH=1:4 | SPE (C18 cartridge) | Waters XBridge BEH C18 (150 mm×3 mm, 5 μm) | - | 0.7, 0.5, 0.7 | [ |
OA, DTX-1 | urine | Vsample:VMeOH: V10%trichloroaceticacid:VACN=10:4:1:5 | none | Waters ACQUITY UPLC BEH C18 (100 mm×2.1 mm, 1.7 μm) | - | - | [ | |
blood | Vsample:V75%MeOH=1:4 | none | - | - | ||||
feces | msample:VMeOH=1:4 | none | - | - | ||||
TTX | TTX | urine, plasma | Vsample:V2%AA=1:4 | SPE (C18 and HILIC cartridges) | Agilent Atlantics dC18 (150 mm×2.1 mm, 5 μm) | 2.5-20, 2.5-500 | 0.13 | [ |
TTX | urine | Vsample:V0.1%AA=1:1 | online SPE (SCX and C18 cartridges) | HALO Penta-HILIC (75 mm×3 mm, 2.7 μm) | 2.80-249 | 0.3 | [ | |
TTX | urine blood | Vsample:VACN=1:10 Vsample:VACN=1:10 | SPE (amide cartridge) SPE (CBA cartridge) | Agilent Zorbax HILIC Plus (100 mm×2.1 mm, 3.5 μm) | 1-25 0.5-200 | 0.5 0.25 | [ | |
TTX | urine, blood | Vsample:VH2O: VIS(voglibose)=1:1:4 | SPE (PCX cartridge) | Agilent PC HILIC (150 mm×2 mm, 5 μm) | 2-1200 | 0.32 | [ | |
PSP | STX, NEO | urine | Vsample:VH2O:VMeOH: VACN=2:2:1:10 | SPE (PA cartridge) | Waters ACQUITY UPLC BEH Amide (100 mm×2.1 mm, 1.7 μm) | 0.5-99.2, 2.1-207 | 0.2, 1 | [ |
STX, NEO | urine | Vsample:VIS(15N7-STX): Vphosphatebuffer=20:1:40 | online SPE (WCX cartridge) | Waters Atlantis Silica HILIC (50 mm×1 mm, 2 μm) | - | 4.8, 10.1 | [ | |
NEO | urine | Vsample:Vphosphatebuffer=1:5 | SPE (CCX cartridge) | Waters Atlantis Silica HILIC (50 mm×2.1 mm, 3 μm) | 0.01-1 | 0.001 | [ | |
ASP | DA | urine | Vsample:VMeOH=1:1 | SPE (PAX cartridge) | Waters ACQUITY UPLC HSS T3 (100 mm×2.1 mm, 1.8 μm) | - | 0.12 | [ |
DA | urine plasma | Vsample:VMeOH:VH2O=1:49:50 Vsample:VMeOH=1:2 | none none | Phenomenex Synergi Hydro-RP (50 mm×2.0 mm, 2.5 μm) | 0.31-16 7.8 -1000 | - - | [ | |
DA | blood | Vsample:Vformicacid:VH2O=50:1:50 | SPE (HILIC cartridge) | Agilent Zorbax SB-C8 (50 mm×2.1 mm, 1.8 μm) | 1.0-10.6 | 0.17 | [ | |
CTX | MC-LR, MC-RR, MC-LA, | urine | Vsample:VH2O=1:24 | SPE (C18 cartridge) | Waters HSS T3 C18 (50 mm×3 mm, 1.8 μm) | 0.5-20 | 0.05, 0.05, 0.13, 0.14, 0.13, 0.05 | [ |
MC-LF, MC-LW, MC-YR | plasma, serum | Vsample:V100nmol/LZnSO4=1:5 | SPE (C18 cartridge) | 0.25-10 | 0.08, 0.08, 0.30, 0.30, 0.30, 0.08 |
Table 2 Reported literature of aquatic biotoxins in biological fluid samples detected by LC-MS/MS
Toxin classifica- tion | Analyte | Matrix | Extraction solvent | Purification method | Analytical column | Quantitative range/ (ng/mL) | LOD/ (ng/mL) | Ref. |
TTX: tetrodotoxin; STX: saxitoxin; NEO: neosaxitoxin; DA: domoic acid; MC: microcystin; MeOH: methanol; ACN: acetonitrile; AA: acetic acid; SCX: strong citation exchange; CBA: carboxyl bonded amide; PCX: polymer citation exchange; PA: polyamide; WCX: weak citation exchange; CCX: carboxyl citation exchange; PAX: polymer anion exchange; -: not mentioned. | ||||||||
DSP | OA, DTX-1, DTX-2 | urine | Vsample:VMeOH=1:4 | SPE (C18 cartridge) | Waters XBridge BEH C18 (150 mm×3 mm, 5 μm) | - | 0.7, 0.5, 0.7 | [ |
OA, DTX-1 | urine | Vsample:VMeOH: V10%trichloroaceticacid:VACN=10:4:1:5 | none | Waters ACQUITY UPLC BEH C18 (100 mm×2.1 mm, 1.7 μm) | - | - | [ | |
blood | Vsample:V75%MeOH=1:4 | none | - | - | ||||
feces | msample:VMeOH=1:4 | none | - | - | ||||
TTX | TTX | urine, plasma | Vsample:V2%AA=1:4 | SPE (C18 and HILIC cartridges) | Agilent Atlantics dC18 (150 mm×2.1 mm, 5 μm) | 2.5-20, 2.5-500 | 0.13 | [ |
TTX | urine | Vsample:V0.1%AA=1:1 | online SPE (SCX and C18 cartridges) | HALO Penta-HILIC (75 mm×3 mm, 2.7 μm) | 2.80-249 | 0.3 | [ | |
TTX | urine blood | Vsample:VACN=1:10 Vsample:VACN=1:10 | SPE (amide cartridge) SPE (CBA cartridge) | Agilent Zorbax HILIC Plus (100 mm×2.1 mm, 3.5 μm) | 1-25 0.5-200 | 0.5 0.25 | [ | |
TTX | urine, blood | Vsample:VH2O: VIS(voglibose)=1:1:4 | SPE (PCX cartridge) | Agilent PC HILIC (150 mm×2 mm, 5 μm) | 2-1200 | 0.32 | [ | |
PSP | STX, NEO | urine | Vsample:VH2O:VMeOH: VACN=2:2:1:10 | SPE (PA cartridge) | Waters ACQUITY UPLC BEH Amide (100 mm×2.1 mm, 1.7 μm) | 0.5-99.2, 2.1-207 | 0.2, 1 | [ |
STX, NEO | urine | Vsample:VIS(15N7-STX): Vphosphatebuffer=20:1:40 | online SPE (WCX cartridge) | Waters Atlantis Silica HILIC (50 mm×1 mm, 2 μm) | - | 4.8, 10.1 | [ | |
NEO | urine | Vsample:Vphosphatebuffer=1:5 | SPE (CCX cartridge) | Waters Atlantis Silica HILIC (50 mm×2.1 mm, 3 μm) | 0.01-1 | 0.001 | [ | |
ASP | DA | urine | Vsample:VMeOH=1:1 | SPE (PAX cartridge) | Waters ACQUITY UPLC HSS T3 (100 mm×2.1 mm, 1.8 μm) | - | 0.12 | [ |
DA | urine plasma | Vsample:VMeOH:VH2O=1:49:50 Vsample:VMeOH=1:2 | none none | Phenomenex Synergi Hydro-RP (50 mm×2.0 mm, 2.5 μm) | 0.31-16 7.8 -1000 | - - | [ | |
DA | blood | Vsample:Vformicacid:VH2O=50:1:50 | SPE (HILIC cartridge) | Agilent Zorbax SB-C8 (50 mm×2.1 mm, 1.8 μm) | 1.0-10.6 | 0.17 | [ | |
CTX | MC-LR, MC-RR, MC-LA, | urine | Vsample:VH2O=1:24 | SPE (C18 cartridge) | Waters HSS T3 C18 (50 mm×3 mm, 1.8 μm) | 0.5-20 | 0.05, 0.05, 0.13, 0.14, 0.13, 0.05 | [ |
MC-LF, MC-LW, MC-YR | plasma, serum | Vsample:V100nmol/LZnSO4=1:5 | SPE (C18 cartridge) | 0.25-10 | 0.08, 0.08, 0.30, 0.30, 0.30, 0.08 |
|
[1] | ZHOU Ranfeng, ZHANG Huixian, YIN Xiaoli, PENG Xitian. Progress in the application of novel nano-materials to the safety analysis of agricultural products [J]. Chinese Journal of Chromatography, 2023, 41(9): 731-741. |
[2] | HUANG Jianying, XIA Ling, XIAO Xiaohua, LI Gongke. Advances in microchip electrophoresis for the separation and analysis of biological samples [J]. Chinese Journal of Chromatography, 2023, 41(8): 641-650. |
[3] | WEN Yalun, SHAO Yuchen, ZHAO Xinying, QU Feng. Annual review of capillary electrophoresis technology in 2022 [J]. Chinese Journal of Chromatography, 2023, 41(5): 377-385. |
[4] | SONG Xinli, WANG Ning, HE Feiyan, CHENG Canling, WANG Fei, WANG Jinglong, ZHANG Lihua. Determination of trace perfluorinated compounds in environmental water samples by dispersive solid- phase extraction-high performance liquid chromatography-tandem mass spectrometry using carbon nanotube composite materials [J]. Chinese Journal of Chromatography, 2023, 41(5): 409-416. |
[5] | WANG Jiao, WU Tong, WANG Xinquan, LIU Zhenzhen, XU Hao, WANG Zhiwei, DI Shanshan, ZHAO Huiyu, QI Peipei. QuEChERS-liquid chromatography-tandem mass spectrometry for determination of 22 triazole pesticide residues in Chinese herbal medicines [J]. Chinese Journal of Chromatography, 2023, 41(4): 330-338. |
[6] | XIE Weiya, ZHU Xiaohan, MEI Hongcheng, GUO Hongling, LI Yajun, HUANG Yang, QIN Hao, ZHU Jun, HU Can. Applications of functional materials-based solid phase microextraction technique in forensic science [J]. Chinese Journal of Chromatography, 2023, 41(4): 302-311. |
[7] | OUYANG Yilan, YI Lin, QIU Luyun, ZHANG Zhenqing. Advances in heparin structural analysis by chromatography technologies [J]. Chinese Journal of Chromatography, 2023, 41(2): 107-121. |
[8] | ZHAI Hongwen, MA Hongyu, CAO Meirong, ZHANG Mingxing, MA Junmei, ZHANG Yan, LI Qiang. Application progress of on-line sample preparation techniques coupled with liquid chromatography-mass spectrometry system in the detection of food hazards [J]. Chinese Journal of Chromatography, 2023, 41(12): 1062-1072. |
[9] | YU Tao, CHEN Li, ZHANG Wenmin, ZHANG Lan, LU Qiaomei. Advances in synthesis methods and applications of microporous organic networks for sample preparation [J]. Chinese Journal of Chromatography, 2023, 41(12): 1052-1061. |
[10] | WANG Guoxiu, CHEN Yonglei, LÜ Wenjuan, CHEN Hongli, CHEN Xingguo. Recent developments in the application of covalent organic frameworks in capillary electrochromatography [J]. Chinese Journal of Chromatography, 2023, 41(10): 835-842. |
[11] | YAN Meiting, LONG Wenwen, TAO Xueping, WANG Dan, XIA Zhining, FU Qifeng. Research progress on the construction and applications of metal-organic frameworks in chromatographic stationary phases [J]. Chinese Journal of Chromatography, 2023, 41(10): 879-890. |
[12] | SONG Chunying, JIN Gaowa, YU Dongping, XIA Donghai, FENG Jing, GUO Zhimou, LIANG Xinmiao. Development progress of stationary phase for supercritical fluid chromatography and related application in natural products [J]. Chinese Journal of Chromatography, 2023, 41(10): 866-878. |
[13] | JIANG Wenqian, CHEN Yumei, BI Wentao. Synthesis of porous organic framework materials based on deep eutectic solvents and their application in solid-phase extraction [J]. Chinese Journal of Chromatography, 2023, 41(10): 901-910. |
[14] | YANG Han, TANG Wenqi, ZENG Chu, MENG Shasha, XU Ming. Rational design of high performance metal organic framework stationary phase for gas chromatography [J]. Chinese Journal of Chromatography, 2023, 41(10): 853-865. |
[15] | ZOU Xiaowei, LIU Xing, ZHANG Jianming. Advances in thin layer chromatography coupled with mass spectrometry technology [J]. Chinese Journal of Chromatography, 2023, 41(1): 24-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||