Chinese Journal of Chromatography ›› 2021, Vol. 39 ›› Issue (2): 162-172.DOI: 10.3724/SP.J.1123.2020.08013

• Reviews • Previous Articles     Next Articles

Synthesis and application progress of covalent organic polymers in sample preparation for food safety analysis

WANG Pingli1,2, CHEN Yanlong1, HU Yuling1,*(), LI Gongke1,*()   

  1. 1. School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
    2. School of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
  • Received:2020-08-16 Online:2021-02-08 Published:2021-01-14
  • Contact: HU Yuling,LI Gongke
  • Supported by:
    Research and Development Plan for Key Areas of Food Safety in Guangdong Province of China(2019B020211001);National Key Research and Development Program of China(2019YFC1606101);National Key Research and Development Program of China(2018YFC1603201);National Natural Science Foundation of China(21976213);National Natural Science Foundation of China(21675178);National Natural Science Foundation of China(22074162)

Abstract:

Food safety is closely related to human health and life. Contaminated foods may result in illness or poisoning. For example, perfluorinated compounds can concentrate in the human body, or they can be transferred to the baby during breastfeeding, thus leading to serious health risks. Phthalate esters may cause damage to the liver, lungs, and kidneys. Therefore, food safety has become a hot topic at a global level. Poisonous and harmful substances in foods are derived from the environment, planting or breeding, food contacting materials, and food processing, or due to unsuitable storage conditions. Residues of pesticides and veterinary drugs, organic pollutants, additives, heavy metals, and biotoxins often hamper food safety, causing diseases or even death. The diversity of available food species, complexity of the sample matrix, and lack of information about the source of pollutants render the direct determination of food contaminants difficult. Pretreatment is vital for the accurate analysis of trace toxins in foods. Optimal pretreatment can not only improve the extract efficiency and determination sensitivity, but also prevent instrument contamination. Pretreatment techniques have played an important role in trace determination for complex matrices. Pretreatment methods can be classified as solvent-based and adsorption-based methods. Adsorption-based techniques such as solid-phase extraction, magnetic solid-phase extraction, and solid-phase microextraction are simple and efficient, and hence, are widely used. In these pretreatment techniques, adsorbents play a key role in the extraction effect. In the last few years, metal organic frameworks, metal oxide materials, carbon nanotubes, graphene, and magnetic nanoparticles, as well as a combination of these materials, have been used as adsorbents. These materials are porous and have a large surface area; they are used to enrich trace targets and eliminate interferents. Covalent organic polymers (COPs) are a class of organic porous materials constructed from organic monomers via covalent bonding. Given their excellent characteristics such as light density, good stability, high surface area, structural controllability, and ease of modification, COPs are potential adsorbents. COPs are often synthesized by solvent thermal methods. However, these methods are time-consuming and require toxic solvents and harsh reaction conditions. As alternatives, room-temperature methods, mechanical chemical methods, microwave-assisted methods, and UV-assisted methods have been developed. This has facilitated the synthesis of a wide range of COPs. In this article, the recent applications of COPs in sample pretreatment for food safety analysis are reviewed. COPs can be used in solid-phase extraction by simple packing into columns, polymerization, or chemical bonding in the capillary. Magnetic compounds have been prepared by one-pot synthesis, in situ growth, in situ reduction, or coprecipitation methods and used in magnetic solid-phase extraction. Coatings of solid-phase microextraction fibers are fabricated by physical methods, chemical bonding, sol-gel methods, or in situ growth. Toxic and harmful substances in foods and foodstuffs are efficiently extracted by exploiting the high adsorbent capacities and specificity of COPs. Future development prospects and challenges in sample pretreatment are also discussed herein. There is increased focus on the development of simple, efficient, and environment-friendly methods to synthesize COPs with specific functions; further, high-throughput, sensitive analytical methods may be established. In the future, more specific COPs will be prepared in a cost-effective manner for widespread use in sample pretreatment.

Key words: covalent organic polymers, food safety analysis, sample pretreatment, review

CLC Number: