Chinese Journal of Chromatography ›› 2024, Vol. 42 ›› Issue (2): 194-202.DOI: 10.3724/SP.J.1123.2023.07022
• Articles • Previous Articles Next Articles
WANG Zihao, LIANG Fengzhi, CHEN Xuerong, WU Ping, WU Wei()
Received:
2023-09-06
Online:
2024-02-08
Published:
2024-02-20
Supported by:
CLC Number:
WANG Zihao, LIANG Fengzhi, CHEN Xuerong, WU Ping, WU Wei. Determination of seven perfluoroalkyl and polyfluoroalkyl substances in serum of pregnant women and evaluation of neonatal neurobehavior based on high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2024, 42(2): 194-202.
Compound | Retention time/min | Parent ion*(m/z) | Daughter ion (m/z) | DP/V | CEs/eV |
---|---|---|---|---|---|
Perfluorooctane sulfonamide (PFOSA) | 3.85 | 402.8 | 83.9 | -98 | -79, -90 |
Perfluorohexane sulfonic acid (PFHxS) | 4.18 | 398.9 | 80.1 | -130 | -40, -50 |
Perfluoroheptane sulfonic acid (PFHpS) | 4.50 | 448.9 | 80.1 | -60 | -2, -18 |
Perfluorooctanoic acid (PFOA) | 4.76 | 412.9 | 368.9 | -60 | -5, -16 |
Perfluorodecanoic acid (PFDA) | 5.12 | 512.9 | 468.9 | -75 | -5, -14 |
Perfluorooctane sulfonate (PFOS) | 5.38 | 498.9 | 99.0 | -150 | -50, -66 |
Perfluorononanoic acid (PFNA) | 5.75 | 462.9 | 418.9 | -65 | -5, -14 |
13C4-PFHxS | 4.20 | 401.1 | 79.8 | -135 | -40, -50 |
13C4-PFOA | 4.76 | 412.9 | 371.9 | -70 | -7, -16 |
13C4-PFOS | 5.38 | 503.1 | 99.0 | -170 | -50, -66 |
Table 1 MS parameters of the seven perfluoroalkyl and polyfluoroalkyl substances (PFASs) and three isotope internal standards
Compound | Retention time/min | Parent ion*(m/z) | Daughter ion (m/z) | DP/V | CEs/eV |
---|---|---|---|---|---|
Perfluorooctane sulfonamide (PFOSA) | 3.85 | 402.8 | 83.9 | -98 | -79, -90 |
Perfluorohexane sulfonic acid (PFHxS) | 4.18 | 398.9 | 80.1 | -130 | -40, -50 |
Perfluoroheptane sulfonic acid (PFHpS) | 4.50 | 448.9 | 80.1 | -60 | -2, -18 |
Perfluorooctanoic acid (PFOA) | 4.76 | 412.9 | 368.9 | -60 | -5, -16 |
Perfluorodecanoic acid (PFDA) | 5.12 | 512.9 | 468.9 | -75 | -5, -14 |
Perfluorooctane sulfonate (PFOS) | 5.38 | 498.9 | 99.0 | -150 | -50, -66 |
Perfluorononanoic acid (PFNA) | 5.75 | 462.9 | 418.9 | -65 | -5, -14 |
13C4-PFHxS | 4.20 | 401.1 | 79.8 | -135 | -40, -50 |
13C4-PFOA | 4.76 | 412.9 | 371.9 | -70 | -7, -16 |
13C4-PFOS | 5.38 | 503.1 | 99.0 | -170 | -50, -66 |
Characteristic | Number of pregnant women |
---|---|
Living zone | |
City/Town | 294 |
Country | 85 |
Mother’s schooling time* | |
< 9 | 90 |
9-12 | 141 |
>12 | 148 |
Annual household income/RMB | |
<100000 | 83 |
100000-200000 | 175 |
>200000 | 121 |
Parity | |
0 (primiparous) | 257 |
≥1 (multiparous) | 122 |
Residential building type | |
Reinforced concrete | 231 |
Brick-wood | 111 |
Adobe house | 37 |
Average living space/m2 | |
<10 | 90 |
10-20 | 170 |
>20 | 119 |
Age/years (Mean±SD)# | 27.3±3.8 |
Pre-pregnancy BMI/(kg/m2)(Mean±SD)# | 21.6±2.7 |
Gestational age/weeks (Mean±SD)# | 39.5±1.4 |
Table 2 Demographic characteristics of pregnant women
Characteristic | Number of pregnant women |
---|---|
Living zone | |
City/Town | 294 |
Country | 85 |
Mother’s schooling time* | |
< 9 | 90 |
9-12 | 141 |
>12 | 148 |
Annual household income/RMB | |
<100000 | 83 |
100000-200000 | 175 |
>200000 | 121 |
Parity | |
0 (primiparous) | 257 |
≥1 (multiparous) | 122 |
Residential building type | |
Reinforced concrete | 231 |
Brick-wood | 111 |
Adobe house | 37 |
Average living space/m2 | |
<10 | 90 |
10-20 | 170 |
>20 | 119 |
Age/years (Mean±SD)# | 27.3±3.8 |
Pre-pregnancy BMI/(kg/m2)(Mean±SD)# | 21.6±2.7 |
Gestational age/weeks (Mean±SD)# | 39.5±1.4 |
Compound | Linear range/(ng/mL) | Regression equation | r2 | LOD/(ng/mL) | LOQ/(ng/mL) |
---|---|---|---|---|---|
PFOA | 0.1-200 | y=1.023x+0.085 | 0.998 | 0.020 | 0.066 |
PFOS | 0.1-200 | y=0.066x+0.025 | 0.999 | 0.010 | 0.033 |
PFNA | 0.1-200 | y=0.108x+0.053 | 0.999 | 0.012 | 0.040 |
PFDA | 0.1-200 | y=0.025x-0.022 | 0.998 | 0.008 | 0.026 |
PFHxS | 0.1-200 | y=0.265x-0.041 | 0.997 | 0.010 | 0.033 |
PFHpS | 0.1-200 | y=0.294x-0.028 | 0.995 | 0.006 | 0.020 |
FPOSA | 0.1-200 | y=0.038x-0.017 | 0.993 | 0.016 | 0.053 |
Table 3 Linear ranges, regression equations, correlation coefficients (r2), limits of detection (LODs) and quantification (LOQs) of the seven PFASs
Compound | Linear range/(ng/mL) | Regression equation | r2 | LOD/(ng/mL) | LOQ/(ng/mL) |
---|---|---|---|---|---|
PFOA | 0.1-200 | y=1.023x+0.085 | 0.998 | 0.020 | 0.066 |
PFOS | 0.1-200 | y=0.066x+0.025 | 0.999 | 0.010 | 0.033 |
PFNA | 0.1-200 | y=0.108x+0.053 | 0.999 | 0.012 | 0.040 |
PFDA | 0.1-200 | y=0.025x-0.022 | 0.998 | 0.008 | 0.026 |
PFHxS | 0.1-200 | y=0.265x-0.041 | 0.997 | 0.010 | 0.033 |
PFHpS | 0.1-200 | y=0.294x-0.028 | 0.995 | 0.006 | 0.020 |
FPOSA | 0.1-200 | y=0.038x-0.017 | 0.993 | 0.016 | 0.053 |
Compound | 1 ng/mL | 10 ng/mL | 50 ng/mL | |||||
---|---|---|---|---|---|---|---|---|
Recovery/% | RSD/% | Recovery/% | RSD/% | Recovery/% | RSD/% | |||
PFOA | 114.0 | 9.5 | 108.8 | 6.8 | 94.7 | 7.8 | ||
PFOS | 112.3 | 12.8 | 110.4 | 3.8 | 92.8 | 6.7 | ||
PFNA | 87.9 | 8.7 | 98.7 | 6.9 | 84.6 | 17.8 | ||
PFDA | 90.7 | 5.8 | 85.7 | 18.2 | 107.8 | 6.8 | ||
PFHxS | 84.6 | 10.8 | 104.8 | 14.7 | 102.6 | 12.8 | ||
PFHpS | 96.8 | 12.8 | 107.9 | 15.0 | 92.8 | 18.0 | ||
FPOSA | 116.8 | 16.8 | 112.5 | 14.2 | 107.6 | 12.4 |
Table 4 Spiked recoveries and relative standard deviations (RSDs) of the seven PFASs in fetal bovine serum (n=6)
Compound | 1 ng/mL | 10 ng/mL | 50 ng/mL | |||||
---|---|---|---|---|---|---|---|---|
Recovery/% | RSD/% | Recovery/% | RSD/% | Recovery/% | RSD/% | |||
PFOA | 114.0 | 9.5 | 108.8 | 6.8 | 94.7 | 7.8 | ||
PFOS | 112.3 | 12.8 | 110.4 | 3.8 | 92.8 | 6.7 | ||
PFNA | 87.9 | 8.7 | 98.7 | 6.9 | 84.6 | 17.8 | ||
PFDA | 90.7 | 5.8 | 85.7 | 18.2 | 107.8 | 6.8 | ||
PFHxS | 84.6 | 10.8 | 104.8 | 14.7 | 102.6 | 12.8 | ||
PFHpS | 96.8 | 12.8 | 107.9 | 15.0 | 92.8 | 18.0 | ||
FPOSA | 116.8 | 16.8 | 112.5 | 14.2 | 107.6 | 12.4 |
Compounds | Analytical method | Detection time/min | Matrix | LODs/ (ng/mL) | Recoveries/ % | Reference | ||
---|---|---|---|---|---|---|---|---|
PFNA, PFDA, PFHpS, PFOSA, PFHxS, PFOA, PFOS | LLE-HPLC-MS/MS | 20.0 | serum | 0.006- | 0.020 | 84.6- | 116.8 | this work |
PFOS, PFOA, PFOSA | LPE-LC-MS/MS | 20.0 | food | 0.5- | 1 | 82.2- | 98.7 | [20] |
PFOS, PFHxS, PFOA, PFDA | SPE-LC-MS/MS | 20.0 | water | 0.1- | 0.5 | 89.0- | 112.1 | [21] |
PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA | GC-MS/MS | 24.0 | serum | 0.009- | 0.2 | 71.6- | 141.8 | [22] |
PFDoDA, PFBS, PFHxS, PFOS | ||||||||
PFOS, PFHxS, PFOA, PFNA, PFDA, N-MeFOSA | TOF-LC-MS/MS | 15.3 | plasma | 0.16- | 0.34 | 84.0- | 120.1 | [23] |
Table 5 Comparison of the developed method with other reported methods
Compounds | Analytical method | Detection time/min | Matrix | LODs/ (ng/mL) | Recoveries/ % | Reference | ||
---|---|---|---|---|---|---|---|---|
PFNA, PFDA, PFHpS, PFOSA, PFHxS, PFOA, PFOS | LLE-HPLC-MS/MS | 20.0 | serum | 0.006- | 0.020 | 84.6- | 116.8 | this work |
PFOS, PFOA, PFOSA | LPE-LC-MS/MS | 20.0 | food | 0.5- | 1 | 82.2- | 98.7 | [20] |
PFOS, PFHxS, PFOA, PFDA | SPE-LC-MS/MS | 20.0 | water | 0.1- | 0.5 | 89.0- | 112.1 | [21] |
PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA | GC-MS/MS | 24.0 | serum | 0.009- | 0.2 | 71.6- | 141.8 | [22] |
PFDoDA, PFBS, PFHxS, PFOS | ||||||||
PFOS, PFHxS, PFOA, PFNA, PFDA, N-MeFOSA | TOF-LC-MS/MS | 15.3 | plasma | 0.16- | 0.34 | 84.0- | 120.1 | [23] |
NBNA score | All newborns | Male newborns | Female newborns | P* |
---|---|---|---|---|
Behavior | 11.12±0.62 | 11.10±0.72 | 11.20±0.53 | 0.013 |
Passive muscle tone | 7.37±0.62 | 7.40±0.62 | 7.35±0.63 | 0.210 |
Active muscle tone | 7.50±0.50 | 7.40±0.62 | 7.52±0.50 | 0.009 |
Primitive reflexes | 5.48±0.52 | 5.42±0.50 | 5.56±0.42 | 0.026 |
General assessment | 5.41±0.48 | 5.42±0.41 | 5.41±0.50 | 0.248 |
Total score of NBNA | 37.03±1.27 | 37.00±1.32 | 37.70±1.21 | 0.149 |
Table 6 Results of neonatal behavioral neurological assessment (NBNA) (n=379)
NBNA score | All newborns | Male newborns | Female newborns | P* |
---|---|---|---|---|
Behavior | 11.12±0.62 | 11.10±0.72 | 11.20±0.53 | 0.013 |
Passive muscle tone | 7.37±0.62 | 7.40±0.62 | 7.35±0.63 | 0.210 |
Active muscle tone | 7.50±0.50 | 7.40±0.62 | 7.52±0.50 | 0.009 |
Primitive reflexes | 5.48±0.52 | 5.42±0.50 | 5.56±0.42 | 0.026 |
General assessment | 5.41±0.48 | 5.42±0.41 | 5.41±0.50 | 0.248 |
Total score of NBNA | 37.03±1.27 | 37.00±1.32 | 37.70±1.21 | 0.149 |
Fig. 2 Effects of PFASs exposure during pregnancy on the scores of newborn functional areas * Significant difference (P<0.05). All models were adjusted for maternal age, pre-pregnancy BMI, living zone, mother’s schooling time, annual household income, parity, residential building type and average living space.
Compound | β(95% CI)a | |||||
---|---|---|---|---|---|---|
Behavior | Passive muscle tone | Active muscle tone | Primitive reflexes | General assessment | Total score of NBNA | |
Male newborns (n=201) | ||||||
PFOA | 0.20(-0.19, 0.59) | -0.07(-0.48, 0.32) | 0.04(-0.32, 0.41) | 0.01(-0.36, 0.38) | -0.02(-0.36, 0.32) | 0.11(-0.25, 0.46) |
PFOS | 0.34(-0.07, 0.76) | 0.20(-0.23, 0.65) | -0.54(0.73, -0.35)* | -0.04(-0.43, 0.36) | -0.50(-0.88, -0.13)* | 0.30(-0.08, 0.68) |
PFNA | -0.34(-0.85, 0.18) | -0.67(-1.20, -0.14)* | 0.10(-0.38, 0.59) | -0.13(-0.62, 0.36) | -0.34(-0.79, 0.12) | -0.45(-0.91, -0.01)* |
PFDA | -0.44(-0.71, -0.17)* | 0.20(-0.19, 0.59) | 0.08(-0.24, 0.43) | 0.24(-0.12, 0.60) | 0.17(-0.50, 0.16) | 0.24(-0.11, 0.59) |
PFHxS | 0.46(-0.07, 0.98) | 0.34(-0.23, 0.89) | 0.52(-0.28, 1.30) | 0.38(-0.13, 0.89) | 0.29(-0.18, 0.77) | 0.41(0.02, 0.80)* |
PFHpS | 0.25(-0.46, 0.96) | 0.19(-0.55, 0.92) | 0.40(-0.26, 1.06) | 0.53(-0.14, 1.20) | -0.14(-0.78, 0.29) | 0.49(-0.16, 1.15) |
FPOSA | -0.04(-0.66, 0.59) | 0.17(-0.48, 0.83) | 0.41(-0.17, 1.00) | 0.08(-0.52, 0.68) | -0.26(-0.82, 0.29) | 0.13(-0.44, 0.71) |
Female newborns (n=178) | ||||||
PFOA | 0.24(-0.06, 0.54) | 0.24(-0.12, 0.60) | 0.18(-0.18, 0.54) | 0.26(-0.07, 0.61) | -0.27(-0.51, -0.02)* | 0.28(-0.02, 0.58) |
PFOS | -0.05(-0.43, 0.34) | 0.30(-0.10, 0.70) | -0.11(-0.51, 0.29) | -0.24(-0.61, 0.13) | 0.19(-0.18, 0.56) | 0.04(-0.29, 0.37) |
PFNA | -0.20(0.70, 0.29) | 0.10(-0.41, 0.59) | -0.01(-0.50, 0.49) | -0.13(-0.61, 0.34) | 0.13(-0.34, 0.60) | -0.13(-0.54, 0.29) |
PFDA | 0.46(0.40, 0.52)* | 0.19(-0.14, 0.53) | 0.26(-0.07, 0.60) | 0.04(-0.29, 0.36) | 0.05(-0.26, 0.37) | 0.06(-0.22, 0.35) |
PFHxS | 0.29(-0.19, 0.76) | 0.05(-0.43, 0.53) | -0.30(-0.78, 0.17) | 0.29(-0.17, 0.74) | 0.35(-0.10, 0.80) | 0.18(-0.22, 0.59) |
PFHpS | 0.12(-0.50, 0.74) | -0.01(-0.63, 0.61) | -0.29(0.90, 0.34) | 0.42(-0.18, 1.02) | 0.52(-0.07, 1.12) | 0.22(-0.30, 0.74) |
FPOSA | 0.24(0.31, 0.80) | -0.07(-0.64, 0.49) | -0.31(-0.84, 0.24) | 0.36(-0.18, 0.90) | 0.40(-0.13, 0.92) | 0.12(-0.35, 0.60) |
Table 7 Effects of PFASs exposure during pregnancy on neurobehavior of newborns of different genders
Compound | β(95% CI)a | |||||
---|---|---|---|---|---|---|
Behavior | Passive muscle tone | Active muscle tone | Primitive reflexes | General assessment | Total score of NBNA | |
Male newborns (n=201) | ||||||
PFOA | 0.20(-0.19, 0.59) | -0.07(-0.48, 0.32) | 0.04(-0.32, 0.41) | 0.01(-0.36, 0.38) | -0.02(-0.36, 0.32) | 0.11(-0.25, 0.46) |
PFOS | 0.34(-0.07, 0.76) | 0.20(-0.23, 0.65) | -0.54(0.73, -0.35)* | -0.04(-0.43, 0.36) | -0.50(-0.88, -0.13)* | 0.30(-0.08, 0.68) |
PFNA | -0.34(-0.85, 0.18) | -0.67(-1.20, -0.14)* | 0.10(-0.38, 0.59) | -0.13(-0.62, 0.36) | -0.34(-0.79, 0.12) | -0.45(-0.91, -0.01)* |
PFDA | -0.44(-0.71, -0.17)* | 0.20(-0.19, 0.59) | 0.08(-0.24, 0.43) | 0.24(-0.12, 0.60) | 0.17(-0.50, 0.16) | 0.24(-0.11, 0.59) |
PFHxS | 0.46(-0.07, 0.98) | 0.34(-0.23, 0.89) | 0.52(-0.28, 1.30) | 0.38(-0.13, 0.89) | 0.29(-0.18, 0.77) | 0.41(0.02, 0.80)* |
PFHpS | 0.25(-0.46, 0.96) | 0.19(-0.55, 0.92) | 0.40(-0.26, 1.06) | 0.53(-0.14, 1.20) | -0.14(-0.78, 0.29) | 0.49(-0.16, 1.15) |
FPOSA | -0.04(-0.66, 0.59) | 0.17(-0.48, 0.83) | 0.41(-0.17, 1.00) | 0.08(-0.52, 0.68) | -0.26(-0.82, 0.29) | 0.13(-0.44, 0.71) |
Female newborns (n=178) | ||||||
PFOA | 0.24(-0.06, 0.54) | 0.24(-0.12, 0.60) | 0.18(-0.18, 0.54) | 0.26(-0.07, 0.61) | -0.27(-0.51, -0.02)* | 0.28(-0.02, 0.58) |
PFOS | -0.05(-0.43, 0.34) | 0.30(-0.10, 0.70) | -0.11(-0.51, 0.29) | -0.24(-0.61, 0.13) | 0.19(-0.18, 0.56) | 0.04(-0.29, 0.37) |
PFNA | -0.20(0.70, 0.29) | 0.10(-0.41, 0.59) | -0.01(-0.50, 0.49) | -0.13(-0.61, 0.34) | 0.13(-0.34, 0.60) | -0.13(-0.54, 0.29) |
PFDA | 0.46(0.40, 0.52)* | 0.19(-0.14, 0.53) | 0.26(-0.07, 0.60) | 0.04(-0.29, 0.36) | 0.05(-0.26, 0.37) | 0.06(-0.22, 0.35) |
PFHxS | 0.29(-0.19, 0.76) | 0.05(-0.43, 0.53) | -0.30(-0.78, 0.17) | 0.29(-0.17, 0.74) | 0.35(-0.10, 0.80) | 0.18(-0.22, 0.59) |
PFHpS | 0.12(-0.50, 0.74) | -0.01(-0.63, 0.61) | -0.29(0.90, 0.34) | 0.42(-0.18, 1.02) | 0.52(-0.07, 1.12) | 0.22(-0.30, 0.74) |
FPOSA | 0.24(0.31, 0.80) | -0.07(-0.64, 0.49) | -0.31(-0.84, 0.24) | 0.36(-0.18, 0.90) | 0.40(-0.13, 0.92) | 0.12(-0.35, 0.60) |
|
[1] | SHEN Xiaoli, TANG Weifeng, LIU Junxia, AO Junjie, LIU Xiaoning, HUANG Xian, QIU Jin, ZHANG Jun, ZHANG Qianlong. Association analysis between mixed exposure to phenols and semen quality [J]. Chinese Journal of Chromatography, 2024, 42(2): 203-210. |
[2] | ZHANG Mingye, CAO Yan, LI Xiang, KOU Jing, XU Qitong, YANG Sijie, ZHENG Zhiyi, LIU Jun, MEI Surong. Exposure characteristics and health risk assessment of 97 typical chemical pollutants in human serum [J]. Chinese Journal of Chromatography, 2024, 42(2): 217-223. |
[3] | SONG Xinqiao, GUO Zehua, LIU Weiwen, ZHA Genhan, FAN Liuyin, CAO Chengxi, ZHANG Qiang. Detection and analysis of moving reaction boundary-based electrophoresis distance using smartphone images [J]. Chinese Journal of Chromatography, 2023, 41(9): 752-759. |
[4] | ZHANG Ruihua, GUO Zehua, ZHANG Qiang, ZHA Genhan, CAO Chengxi, FAN Liuyin, LIU Weiwen. Determination of human serum total protein via electrophoresis titration and capacitively coupled contactless conductivity detection [J]. Chinese Journal of Chromatography, 2023, 41(8): 707-713. |
[5] | WANG Jin, YE Kaixiao, TIAN Yan, LIU Ke, LIANG Liuling, LI Qingqian, HUANG Ning, WANG Xinting. Simultaneous determination of 22 antibiotics in environmental water samples by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(3): 241-249. |
[6] | LIU Zhaoyang, DONG Jun, LI Hongxia, YANG Ruiyue, SHAO Zhiyu, WANG Siming. Determination of phosphatidylethanol in whole-blood by liquid chromatography-tandem mass spectrometry based on intelligent scheduled time-zone acquisition technology and the application to population level survey [J]. Chinese Journal of Chromatography, 2023, 41(2): 131-141. |
[7] | LIU Leiqi, CHEN Jingze, FU Wusheng, TANG Cuiying. Determination of amanita peptide and tryptamine toxins in wild mushrooms by high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(11): 976-985. |
[8] | ZHOU Zhiming, LI Jing, CHEN Zhanghao, WU Yingying, LU Tuliu, XIAO Shuxiong. Determination of 32 oxidative dyes by high performance liquid chromatography and confirmation by high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2022, 40(9): 797-809. |
[9] | FENG Junjun, JIANG Haiyun, WANG Jing, JING Zhengyi, ZHANG Fan, TAN Tianyu, HE Feng, JIANG Lihua, LI Haiqin, CHANG Shimin, LI Tengfei. Simultaneous determination of 40 plant growth regulators, fungicides, insecticides, and antibiotics in bean sprouts by QuEChERS-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2022, 40(9): 843-853. |
[10] | LI Hongyan, YANG Huan, MA Chenyi, ZHANG Wanyue, XU Qingyu, CHEN Mingxue, MA Youning. Determination of three oryzanols in rice by mixed-mode solid-phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2022, 40(8): 746-752. |
[11] | LI Xiaohan, LU Yingying, DONG Yongzhen, JIANG Feng, FAN Zhiyong, PAN Hui, LIU Mingjun, CHEN Yiping. Separation and enrichment of trace aflatoxin B1 in grains by magnetic nanomaterials based on SiO2@Fe3O4 [J]. Chinese Journal of Chromatography, 2022, 40(8): 694-703. |
[12] | ZHANG Huiwen, XIA Huimin, LIU Hong, LIU Yanyan, JIU Xin, ZHANG Minhui, HE Chunlong, WANG Huanyun. Rapid analysis of serum components and metabolites of Sanzi San by high performance liguid chromatography-quadrupole/ electrostatic field orbitrap high resolution mass spectrometry [J]. Chinese Journal of Chromatography, 2022, 40(7): 653-660. |
[13] | CHEN Yan, HUANG Congling, JIANG Xunyuan, CHEN Zhiting, WANG Gang, WAN Kai, TANG Xuemei. Chiral separation of new chiral insecticide pyraquinil isomers and establishment of analytical methods in vegetables [J]. Chinese Journal of Chromatography, 2022, 40(7): 634-643. |
[14] | XU Dunming, ZENG Sanmei, LIU Xuncai, WANG Luxiao, FAN Qunyan, ZHANG Xiaojiang, FANG Enhua. Determination and level investigation of 45 hormones in edible bird's nest by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2022, 40(5): 423-432. |
[15] | LI Xiang, WANG Limei, SONG Lulu, WAN Zhengce, KOU Jing, ZHANG Mingye, LÜ Yongman, WANG Youjie, MEI Surong. Simultaneous determination of 35 organochlorine pesticides and polychlorinated biphenyls in the serum of the general population in Wuhan by solid phase extraction-gas chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2022, 40(5): 461-468. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 167
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 135
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||