Chinese Journal of Chromatography ›› 2024, Vol. 42 ›› Issue (9): 856-865.DOI: 10.3724/SP.J.1123.2023.11010
• Article • Previous Articles Next Articles
WANG Haitang1,2, LI Hanyin1, LU Qiwei3, HE Shilong1,*()
Received:
2023-11-16
Online:
2024-09-08
Published:
2024-08-29
Supported by:
CLC Number:
WANG Haitang, LI Hanyin, LU Qiwei, HE Shilong. Determination of eight neonicotinoid pesticides in wastewater by solid phase extraction combined with liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2024, 42(9): 856-865.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chrom-china.com/EN/10.3724/SP.J.1123.2023.11010
Compound | Retention time/min | Precursor ion (m/z) | Product ion (m/z) | Fragmentor/V | Collision energy/eV |
---|---|---|---|---|---|
Dinotefuran | 3.35 | 203.2 | 129.1* | 80 | 12 |
87.1 | 80 | 14 | |||
E-Nitenpyram | 3.87 | 271.1 | 99.1 | 95 | 14 |
56.2* | 95 | 23 | |||
Thiamethoxam | 5.07 | 292.1 | 211.0* | 80 | 10 |
131.8 | 80 | 18 | |||
Clothianidin | 5.37 | 250.1 | 168.9* | 85 | 14 |
131.8 | 85 | 16 | |||
Imidacloprid-d4 | 6.09 | 260.1 | 213.1* | 100 | 14 |
179.1 | 100 | 20 | |||
Imidacloprid | 6.11 | 256.1 | 209.1* | 85 | 12 |
175.1 | 85 | 18 | |||
Imidaclothiz | 6.26 | 262.1 | 181.0* | 95 | 16 |
122.0 | 95 | 35 | |||
Acetamiprid | 6.72 | 223.1 | 126.0* | 110 | 20 |
56.1 | 110 | 16 | |||
Thiacloprid | 7.45 | 253.1 | 125.9* | 110 | 20 |
89.9 | 110 | 45 |
Table 1 Retention times and MS parameters of the target compounds
Compound | Retention time/min | Precursor ion (m/z) | Product ion (m/z) | Fragmentor/V | Collision energy/eV |
---|---|---|---|---|---|
Dinotefuran | 3.35 | 203.2 | 129.1* | 80 | 12 |
87.1 | 80 | 14 | |||
E-Nitenpyram | 3.87 | 271.1 | 99.1 | 95 | 14 |
56.2* | 95 | 23 | |||
Thiamethoxam | 5.07 | 292.1 | 211.0* | 80 | 10 |
131.8 | 80 | 18 | |||
Clothianidin | 5.37 | 250.1 | 168.9* | 85 | 14 |
131.8 | 85 | 16 | |||
Imidacloprid-d4 | 6.09 | 260.1 | 213.1* | 100 | 14 |
179.1 | 100 | 20 | |||
Imidacloprid | 6.11 | 256.1 | 209.1* | 85 | 12 |
175.1 | 85 | 18 | |||
Imidaclothiz | 6.26 | 262.1 | 181.0* | 95 | 16 |
122.0 | 95 | 35 | |||
Acetamiprid | 6.72 | 223.1 | 126.0* | 110 | 20 |
56.1 | 110 | 16 | |||
Thiacloprid | 7.45 | 253.1 | 125.9* | 110 | 20 |
89.9 | 110 | 45 |
Fig. 2 Effect of different factors on the recoveries of the target compounds (n=3) a. extraction column; b. extraction volume; c. sample loading speed; d. pH.
Fig. 3 Chromatograms of the target compounds under different gradient elution programs Gradient elution program: a. 0-3 min, 10%B-45%B; 3-7 min, 45%B-80%B; 7-7.1 min, 80%B-10%B; 7.1-8.1 min, 10%B. b. 0-5 min, 10%B-45%B; 5-9 min, 45%B-80%B; 9-9.1 min, 80%B-10%B; 9.1-10.1 min, 10%B. Peak identifications: 1. dinotefuran; 2. E-nitenpyram; 3. thiamethoxam; 4. clothianidin; 5. imidacloprid; 6. imidaclothiz; 7. acetamiprid; 8. thiacloprid.
Factor | Code | Levels | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
Volume fraction of methanol | X1 | 0 | 5 | 15 |
in water/% | ||||
Volume fraction of acetonitrile | X2 | 0 | 50 | 100 |
in methanol/% | ||||
Volume of eluent/mL | X3 | 3 | 6 | 9 |
Table 2 Three factors and three levels of response surface methodology test
Factor | Code | Levels | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
Volume fraction of methanol | X1 | 0 | 5 | 15 |
in water/% | ||||
Volume fraction of acetonitrile | X2 | 0 | 50 | 100 |
in methanol/% | ||||
Volume of eluent/mL | X3 | 3 | 6 | 9 |
Source | Sum of square | Degree of freedom | Mean square | F- value | P- value |
---|---|---|---|---|---|
Model | 288.37 | 9 | 32.04 | 26.06 | 0.0001* |
X1 | 3.19 | 1 | 3.19 | 2.59 | 0.1514 |
X2 | 10.24 | 1 | 10.24 | 8.33 | 0.0235* |
X3 | 112.5 | 1 | 112.5 | 91.5 | <0.0001* |
X1X2 | 0.0025 | 1 | 0.0025 | 0.002 | 0.9653 |
X1X3 | 0.0006 | 1 | 0.0006 | 0.0005 | 0.9826 |
X2X3 | 0.0306 | 1 | 0.0306 | 0.0249 | 0.879 |
0.005 | 1 | 0.005 | 0.0041 | 0.9509 | |
32.79 | 1 | 32.79 | 26.67 | 0.0013* | |
121.78 | 1 | 121.78 | 99.05 | <0.0001* | |
Residual | 8.61 | 7 | 1.23 | ||
Lack of fit | 0.2144 | 3 | 0.0715 | 0.0341 | 0.9903 |
Pure error | 8.39 | 4 | 2.1 | ||
Cor total | 296.98 | 16 |
Table 3 Analysis of variance (ANOVA) of regression model
Source | Sum of square | Degree of freedom | Mean square | F- value | P- value |
---|---|---|---|---|---|
Model | 288.37 | 9 | 32.04 | 26.06 | 0.0001* |
X1 | 3.19 | 1 | 3.19 | 2.59 | 0.1514 |
X2 | 10.24 | 1 | 10.24 | 8.33 | 0.0235* |
X3 | 112.5 | 1 | 112.5 | 91.5 | <0.0001* |
X1X2 | 0.0025 | 1 | 0.0025 | 0.002 | 0.9653 |
X1X3 | 0.0006 | 1 | 0.0006 | 0.0005 | 0.9826 |
X2X3 | 0.0306 | 1 | 0.0306 | 0.0249 | 0.879 |
0.005 | 1 | 0.005 | 0.0041 | 0.9509 | |
32.79 | 1 | 32.79 | 26.67 | 0.0013* | |
121.78 | 1 | 121.78 | 99.05 | <0.0001* | |
Residual | 8.61 | 7 | 1.23 | ||
Lack of fit | 0.2144 | 3 | 0.0715 | 0.0341 | 0.9903 |
Pure error | 8.39 | 4 | 2.1 | ||
Cor total | 296.98 | 16 |
Compound | X1/% | X2/% | X3/mL | Recovery/% |
---|---|---|---|---|
Dinotefuran | 10.49 | 50 | 7.056 | 96.17 |
E-Nitenpyram | 13.32 | 80 | 6.561 | 96.38 |
Thiamethoxam | 9.32 | 50 | 6.444 | 96.63 |
Clothianidin | 4.24 | 80 | 7.137 | 93.81 |
Imidacloprid | 3.92 | 60 | 6.711 | 95.16 |
Imidaclothiz | 6.08 | 30 | 6.678 | 96.01 |
Acetamiprid | 6.66 | 60 | 7.026 | 98.53 |
Thiacloprid | 12.10 | 70 | 6.714 | 96.47 |
Table 4 Optimal parameters of the eight neonicotinoid pesticides obtained by response surface methodology
Compound | X1/% | X2/% | X3/mL | Recovery/% |
---|---|---|---|---|
Dinotefuran | 10.49 | 50 | 7.056 | 96.17 |
E-Nitenpyram | 13.32 | 80 | 6.561 | 96.38 |
Thiamethoxam | 9.32 | 50 | 6.444 | 96.63 |
Clothianidin | 4.24 | 80 | 7.137 | 93.81 |
Imidacloprid | 3.92 | 60 | 6.711 | 95.16 |
Imidaclothiz | 6.08 | 30 | 6.678 | 96.01 |
Acetamiprid | 6.66 | 60 | 7.026 | 98.53 |
Thiacloprid | 12.10 | 70 | 6.714 | 96.47 |
Compound | Regression equation | r | Linear range/(μg/L) | MDL/(ng/L) | MQL/(ng/L) |
---|---|---|---|---|---|
Dinotefuran | y=1.723x+0.0374 | 0.9996 | 0.5-100 | 0.8 | 3.2 |
E-Nitenpyram | y=1.545x+0.0376 | 0.9995 | 0.2-100 | 0.4 | 1.6 |
Thiamethoxam | y=3.734x+0.0654 | 0.9996 | 0.2-100 | 0.5 | 2.0 |
Clothianidin | y=0.499x+0.013 | 0.9991 | 0.2-100 | 0.6 | 2.4 |
Imidacloprid | y=1.345x+0.0458 | 0.9995 | 0.5-100 | 1.2 | 4.8 |
Imidaclothiz | y=1.302x+0.0256 | 0.9993 | 0.2-100 | 0.4 | 1.6 |
Acetamiprid | y=7.443x+0.201 | 0.9994 | 0.1-100 | 0.2 | 0.8 |
Thiacloprid | y=7.342x+0.091 | 0.9995 | 0.1-100 | 0.3 | 1.2 |
Table 5 Linear regression equations, correlation coefficients (r), linear ranges, method detection limits (MDLs) and method quantification limits (MQLs) of the eight neonicotinoid compounds
Compound | Regression equation | r | Linear range/(μg/L) | MDL/(ng/L) | MQL/(ng/L) |
---|---|---|---|---|---|
Dinotefuran | y=1.723x+0.0374 | 0.9996 | 0.5-100 | 0.8 | 3.2 |
E-Nitenpyram | y=1.545x+0.0376 | 0.9995 | 0.2-100 | 0.4 | 1.6 |
Thiamethoxam | y=3.734x+0.0654 | 0.9996 | 0.2-100 | 0.5 | 2.0 |
Clothianidin | y=0.499x+0.013 | 0.9991 | 0.2-100 | 0.6 | 2.4 |
Imidacloprid | y=1.345x+0.0458 | 0.9995 | 0.5-100 | 1.2 | 4.8 |
Imidaclothiz | y=1.302x+0.0256 | 0.9993 | 0.2-100 | 0.4 | 1.6 |
Acetamiprid | y=7.443x+0.201 | 0.9994 | 0.1-100 | 0.2 | 0.8 |
Thiacloprid | y=7.342x+0.091 | 0.9995 | 0.1-100 | 0.3 | 1.2 |
Compound | Added/(ng/L) | Recovery/% | RSD/% | Compound | Added/(ng/L) | Recovery/% | RSD/% |
---|---|---|---|---|---|---|---|
Dinotefuran | 10 | 86.4 | 8.7 | Imidacloprid | 10 | 87.1 | 9.4 |
200 | 93.8 | 6.5 | 200 | 91.8 | 5.9 | ||
1000 | 94.2 | 7.9 | 1000 | 87.5 | 5.5 | ||
E-Nitenpyram | 10 | 91.8 | 7.9 | Imidaclothiz | 10 | 85.4 | 8.6 |
200 | 93.5 | 6.5 | 200 | 92.5 | 7.8 | ||
1000 | 93.8 | 5.8 | 1000 | 91.7 | 6.9 | ||
Thiamethoxam | 10 | 89.4 | 9.4 | Acetamiprid | 10 | 82.6 | 6.8 |
200 | 92.1 | 8.4 | 200 | 86.8 | 4.7 | ||
1000 | 94.1 | 5.2 | 1000 | 92.7 | 6.2 | ||
Clothianidin | 10 | 87.2 | 9.3 | Thiacloprid | 10 | 85.8 | 6.4 |
200 | 92.1 | 5.8 | 200 | 91.1 | 4.5 | ||
1000 | 93.3 | 6.7 | 1000 | 93.4 | 3.9 |
Table 6 Recoveries and RSDs of the eight neonicotinoid compounds at three spiked levels (n=3)
Compound | Added/(ng/L) | Recovery/% | RSD/% | Compound | Added/(ng/L) | Recovery/% | RSD/% |
---|---|---|---|---|---|---|---|
Dinotefuran | 10 | 86.4 | 8.7 | Imidacloprid | 10 | 87.1 | 9.4 |
200 | 93.8 | 6.5 | 200 | 91.8 | 5.9 | ||
1000 | 94.2 | 7.9 | 1000 | 87.5 | 5.5 | ||
E-Nitenpyram | 10 | 91.8 | 7.9 | Imidaclothiz | 10 | 85.4 | 8.6 |
200 | 93.5 | 6.5 | 200 | 92.5 | 7.8 | ||
1000 | 93.8 | 5.8 | 1000 | 91.7 | 6.9 | ||
Thiamethoxam | 10 | 89.4 | 9.4 | Acetamiprid | 10 | 82.6 | 6.8 |
200 | 92.1 | 8.4 | 200 | 86.8 | 4.7 | ||
1000 | 94.1 | 5.2 | 1000 | 92.7 | 6.2 | ||
Clothianidin | 10 | 87.2 | 9.3 | Thiacloprid | 10 | 85.8 | 6.4 |
200 | 92.1 | 5.8 | 200 | 91.1 | 4.5 | ||
1000 | 93.3 | 6.7 | 1000 | 93.4 | 3.9 |
Analytes | Sample type | Sample volume/ (mL) | MDL/ (ng/L) | Linear range/ (μg/L) | RSD/% | RE/% | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dinotefuran, E-nitenpyram, thiamethoxam, clothianidin, imidacloprid, imidaclothiz, acetamiprid, thiacloprid | wastewater | 100 | 0.2- | 1.2 | 0.1- | 100* | 3.9- | 9.4 | 82.6-94.2 | this study | |
Acetamiprid, imidacloprid, thiacloprid, thiamethoxam, clothianidin, dinotefuran | wastewater | 500 | 1.8- | 6.8 | 1- | 500 | 5.26- | 11.5 | 33.7-116 | [17] | |
Dinotefuran, thiamethoxam, clothianidin, imidacloprid, imidaclothiz, acetamiprid, thiacloprid | drinking water | 500 | 0.01- | 0.2 | 0.01- | 200 | 1.6- | 7.3 | 74.0-123 | [9] | |
Thiamethoxam, clothianidin, imidacloprid, acetamiprid, | sea water | 1000 | 0.1- | 7.8 | 0.05- | 100 | 3- | 18 | 72.0-117 | [24] | |
thiacloprid | river water | 0.1- | 1.0 |
Table 7 Comparison with other literatures
Analytes | Sample type | Sample volume/ (mL) | MDL/ (ng/L) | Linear range/ (μg/L) | RSD/% | RE/% | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dinotefuran, E-nitenpyram, thiamethoxam, clothianidin, imidacloprid, imidaclothiz, acetamiprid, thiacloprid | wastewater | 100 | 0.2- | 1.2 | 0.1- | 100* | 3.9- | 9.4 | 82.6-94.2 | this study | |
Acetamiprid, imidacloprid, thiacloprid, thiamethoxam, clothianidin, dinotefuran | wastewater | 500 | 1.8- | 6.8 | 1- | 500 | 5.26- | 11.5 | 33.7-116 | [17] | |
Dinotefuran, thiamethoxam, clothianidin, imidacloprid, imidaclothiz, acetamiprid, thiacloprid | drinking water | 500 | 0.01- | 0.2 | 0.01- | 200 | 1.6- | 7.3 | 74.0-123 | [9] | |
Thiamethoxam, clothianidin, imidacloprid, acetamiprid, | sea water | 1000 | 0.1- | 7.8 | 0.05- | 100 | 3- | 18 | 72.0-117 | [24] | |
thiacloprid | river water | 0.1- | 1.0 |
Compound | Contents/(ng/L) | ME/% | |||
---|---|---|---|---|---|
S1 | S2 | S3 | S4 | ||
Dinotefuran | ND | 5.49 | 6.69 | 23.1 | 84.3-98.7 |
E-Nitenpyram | ND | 4.83 | 5.39 | 13.2 | 80.9-96.2 |
Thiamethoxam | 11.6 | 18.1 | 9.46 | 15.2 | 90.4-103.5 |
Clothianidin | 8.91 | 13.4 | 10.7 | 17.9 | 89.7-108.1 |
Imidacloprid | 31.1 | 256 | 178 | 189 | 97.2-113.7 |
Imidaclothiz | ND | 14.5 | 14.2 | 12.3 | 93.2-104.8 |
Acetamiprid | 8.45 | 17.9 | 16.6 | 57.2 | 96.9-112.7 |
Thiacloprid | 135 | 1.98 | 2.47 | 1.89 | 87.6-105.3 |
Table 8 Contents and MEs of the eight neonicotinoid compounds in real wastewater samples
Compound | Contents/(ng/L) | ME/% | |||
---|---|---|---|---|---|
S1 | S2 | S3 | S4 | ||
Dinotefuran | ND | 5.49 | 6.69 | 23.1 | 84.3-98.7 |
E-Nitenpyram | ND | 4.83 | 5.39 | 13.2 | 80.9-96.2 |
Thiamethoxam | 11.6 | 18.1 | 9.46 | 15.2 | 90.4-103.5 |
Clothianidin | 8.91 | 13.4 | 10.7 | 17.9 | 89.7-108.1 |
Imidacloprid | 31.1 | 256 | 178 | 189 | 97.2-113.7 |
Imidaclothiz | ND | 14.5 | 14.2 | 12.3 | 93.2-104.8 |
Acetamiprid | 8.45 | 17.9 | 16.6 | 57.2 | 96.9-112.7 |
Thiacloprid | 135 | 1.98 | 2.47 | 1.89 | 87.6-105.3 |
|
[1] | CHEN Yueqin, MA Ming, XU Hongdan, PAN Chunyan. Simultaneous determination of 61 hormones in water by solid phase extraction-ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2024, 42(9): 866-874. |
[2] | XUE Yufan, SHANG Ting, CUI Juntao, ZHAO Lingjuan, LI Pei, ZENG Xiangying, YU Zhiqiang. Determination of ten bisphenols and five parabens in urine by solid supported liquid-liquid extraction and liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2024, 42(9): 827-836. |
[3] | CHEN Zongbao, XIE Shiye, LIU Yongjun, ZHANG Wenmin, FANG Min, ZHANG Lan. Zirconium-based metal-organic framework composites for solid phase extraction of brevetoxin-A from seawater [J]. Chinese Journal of Chromatography, 2024, 42(9): 819-826. |
[4] | FENG Hao, ZHANG Wei, HE Baoshan, LI Panpan, GAO Shuqing, GUO Baoyuan, YANG Yongtan. Simultaneous determination of 21 perfluorinated and polyfluoroalkyl substances in plant oils by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry [J]. Chinese Journal of Chromatography, 2024, 42(8): 731-739. |
[5] | HE Yu, SHAN Yichu, ZHANG Lihua, ZHANG Zhenbin, LI Yang. An enrichment strategy based on hydrophobic tagging and reversed-phase chromatographic separation for the analysis of lysine-containing peptides [J]. Chinese Journal of Chromatography, 2024, 42(7): 721-729. |
[6] | XIE Baoxuan, LYU Yang, LIU Zhen. Recent advances of molecular imprinting technology for the separation and recognition of complex biological sample systems [J]. Chinese Journal of Chromatography, 2024, 42(6): 508-523. |
[7] | CHEN Jian, XU Kun, GAO Han, ZHAO Rui, HUANG Yanyan. Preparation of peptide-functionalized affinity materials for the highly specific capture and analysis of mitochondria [J]. Chinese Journal of Chromatography, 2024, 42(6): 555-563. |
[8] | CHEN Xin, QIAN Wenping, CHEN Tianqi, SHAO Lingyun, ZHANG Wenfen, ZHANG Shusheng. Synthesis of fluorinated nitrogen-rich porous organic polymers and removal of perfluorooctanoic acid from water [J]. Chinese Journal of Chromatography, 2024, 42(6): 572-580. |
[9] | LI Yanan, LIU Xiaoyan, WANG Yan, LIU Zhen, YE Mingliang, WANG Hailin. Deciphering cellular processes responding to lethality of 17β-estradiol by quantitative phosphoproteomics [J]. Chinese Journal of Chromatography, 2024, 42(4): 333-344. |
[10] | HE Hongmei, XU Lingying, ZHANG Changpeng, FANG Nan, JIANG Jinhua, WANG Xiangyun, YU Jianzhong, ZHAO Xueping. Determination of three new herbicide residues in soil, sediment and water by liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2024, 42(3): 256-263. |
[11] | YANG Zhe, JIANG Liwei, YANG Siyao, WU Yidi, LYU Jianxia. Simultaneous determination of 102 synthetic cannabinoids in electronic cigarette oil by liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2024, 42(10): 943-953. |
[12] | WANG Junxia, XU Sijie, SUN Yueying, LEI Huihui, CHENG Yuanyuan, WANG Xuedong, ZHANG Zhan’en. Matrix solid-phase dispersion extraction of organophosphorus flame retardants in soil based on response surface methodology [J]. Chinese Journal of Chromatography, 2024, 42(1): 64-74. |
[13] | GU Shuqing, CHEN Niannian, ZENG Jing, PENG Xiaoyu, ZHANG Min, GAO Yu, PAN Lina, GE Cheng, LI Wei, YI Xionghai, GUO Dehua, DENG Xiaojun. Identifying animal-derived components in camel milk and its products by ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2024, 42(1): 13-23. |
[14] | XIA Baolin, WANG Shitao, YIN Jingjing, ZHANG Weiyi, YANG Na, LIU Qiang, WU Haijing. Simultaneous determination of 43 antibacterials from nine categories in water using automatic sample loading-solid phase extraction-ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(7): 591-601. |
[15] | WANG Yuanyuan, LI Lulu, LÜ Jia, CHEN Yongyan, ZHANG Lan. Determination of 13 halobenzoquinone disinfection by-products in drinking water using solid phase extraction-ultra performance liquid chromatography-triple quadrupole mass spectrometry [J]. Chinese Journal of Chromatography, 2023, 41(6): 482-489. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||