Loading...

List of Issues

    Chinese Journal of Chromatography
    2021, Vol. 39, No. 6
    Online: 08 June 2021

    For Selected: Toggle Thumbnails
    Annual Reviews
    Annual review of capillary electrophoresis technology in 2020
    WEI Bo, MA Yao, TIAN Wenzhe, ZHAO Xinying, QU Feng
    2021, 39 (6):  559-566.  DOI: 10.3724/SP.J.1123.2021.03024
    Abstract ( 242 )   HTML ( 216 )   PDF (1064KB) ( 190 )  

    This paper reviews the developments in capillary electrophoresis (CE) in 2020. A total of 222 research papers related to CE technology published in 2020 were retrieved from the ISI Web of Science. These papers were selected by using the keywords “capillary electrophoresis-mass spectrometry”, “capillary isoelectric focusing”, “micellar electrokinetic chromatography”, or “capillary electrophoresis” as search conditions. A further 37 research papers related to CE technology were found in Chinese journals: Chinese Journal of Analytical Chemistry and Chinese Journal of Chromatography. The 38 papers published in 13 different journals with an impact factor (IF)≥5.0 are individually discussed. In particular, the journal Analytical Chemistry (IF=6.8) was found to have nine relevant articles, eight of which were related to CE-MS technology and its application, while Food Chemistry (IF=6.3) published five articles with four papers based on micellar electrokinetic chromatography (MEKC) and its combined technology. This demonstrated that MEKC can simultaneously separate negatively charged, positively charged, and neutral particles, in addition to featuring the advantage of combining different detector applications for the analysis of target matter in a complex matrix. In Analytica Chimica Acta (IF=6.0), five articles were collected, which mainly focused on new applications of CE-MS and multimode CE research. In Talanta (IF=5.3), 10 articles were collected, which focused on new methods and applications of CE and CE-MS. The remaining nine articles, i. e., seven experimental articles, one review article, and one introduction of scientific research achievements, were published in various other high-impact journals. At the same time, 184 articles were found in 89 journals with IF<5.0. In particular, the Journal of Chromatography A (IF=4.1) and Electrophoresis (IF=3.1) contained intensive reports for CE: 16 and 24 publications in relevant areas. The representative contents of 40 articles published in two journals were introduced comprehensively in this review, including new materials and new applications of MEKC, as well as new applications of CE-MS and CE. An overview of the work in the 37 articles collected from Chinese journals included “Aptamer Special Issue” published by Chinese Journal of Analytical Chemistry and two CE technical special issues published by Chinese Journal of Chromatography. In the “Aptamer Special Issue”, Qu Feng’s research group from Beijing Institute of Technology reported five works on aptamers based on CE, while the contents of Chinese Journal of Chromatography include new applications of CE and new materials in capillary tubes. In summary, new methods and applications of capillary electrophoresis-mass spectrometry (CE-MS) were the prominent development trend in CE technology in the year 2020, with the main focus being on the combination of CE-MS with electrochemical detection, solid-phase extraction, and various capillary electrophoresis modes. The number of reports related to the CE-MS interface has decreased compared to that in previous years. Conventional CE technology is mainly focused on the applications of MEKC in the analysis and concentration of complex samples, especially for the analysis of complex matrix samples such as food and drugs. In addition, the scientific research achievements of Chinese experts and scholars in CE-related fields cover the application of CE in life sciences, clinical medicine, pharmaceutical research and development, environmental science, natural products, food analysis, etc., representing the level and current status of the application of CE research in China.

    Reviews
    Research advances of high-throughput cell-based drug screening systems based on microfluidic technique
    LIANG Yixiao, PAN Jianzhang, FANG Qun
    2021, 39 (6):  567-577.  DOI: 10.3724/SP.J.1123.2020.07014
    Abstract ( 301 )   HTML ( 48 )   PDF (6429KB) ( 151 )  

    Drug screening is the process of screening new drugs or leading compounds with biological activity from natural products or synthetic compounds, and it plays an essential role in drug discovery. The discovery of innovative drugs requires the screening of a large number of compounds with appropriate drug targets. With the development of genomics, proteomics, metabolomics, combinatorial chemistry, and other disciplines, the library of drug molecules has been largely expanded, and the number of drug targets is continuously increasing. High-throughput screening systems enable the parallel analysis of thousands of reactions through automated operation, thereby enhancing the experimental scale and efficiency of drug screening. Among them, cell-based high-throughput drug screening has become the main screening mode because it can provide a microenvironment similar to human physiological conditions. However, the current high-throughput screening systems are mainly built based on multiwell plates, which have several disadvantages such as simple cell culture conditions, laborious and time-consuming operation, and high reagent consumption. In addition, it is difficult to achieve complex drug combination screening. Therefore, there is an urgent need for rapid and low-cost drug screening methods to reduce the time and cost of drug development. Microfluidic techniques, which can manipulate and control microfluids in microscale channels, have the advantages of low consumption, high efficiency, high throughput, and automation. It can overcome the shortcomings of screening systems based on multi-well plates and provide an efficient and reliable technical solution for establishing high-throughput cell-based screening systems. Moreover, microfluidic systems can be flexibly changed in terms of cell culture materials, chip structure design, and fluid control methods to enable better control and simulation of cell growth microenvironment. Operations such as cell seeding, culture medium replacement or addition, drug addition and cleaning, and cell staining reagent addition are usually involved in cell-based microfluidic screening systems. These operations are all based on the manipulation of microfluids. This paper reviews the research advances in cell-based microfluidic screening systems using different microfluidic manipulation modes, namely perfusion flow mode, droplet mode, and microarray mode. In addition, the advantages and disadvantages of these systems are summarized. Moreover, the development prospects of high-throughput screening systems based on microfluidic techniques has been looked forward. Furthermore, the current problems in this field and the directions to overcome these problems are discussed.

    Mass spectrometry imaging technology and its application in breast cancer research
    ZHANG Mengting, ZHANG Yulu, WANG Haojiang, LI Ning, LI Bo, XIAO Hong, BIAN Wei, CAI Zongwei
    2021, 39 (6):  578-587.  DOI: 10.3724/SP.J.1123.2020.10005
    Abstract ( 245 )   HTML ( 34 )   PDF (1545KB) ( 157 )  

    The incidence of breast cancer, one of the most common malignancies affecting women, is increasing significantly worldwide. Given the rapid development of medical technology, early and effective diagnostic methods should be able to improve the survival rate and quality of life of patients suffering from disease. However, although existing treatment options, including chemotherapy and endocrine therapies, have greatly improved the survival of patients, disease recurrence in the long term remains a challenge. Because breast cancer is a heterogeneous and complex disease, which includes several subtypes with different responses to treatment, the continual acquisition of spatial information on related biomolecules is important for accurate tracking of the tumor heterogeneity and microenvironment. At present, prognostic and predictive biomarkers, such as human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), Ki-67, progesterone receptor (PR), and programmed death-ligand 1 (PD-L1), are validated for use in the decision-making over breast cancer therapies. Mass spectrometry imaging (MSI) is a useful technique for acquiring molecular information about biological tissues, including qualitative, quantitative, and spatial distribution information, because it is based on the ion mass-to-charge ratio of the biomolecules and avoids the need for their labeling and staining. MSI can also acquire molecular information on drugs and their metabolites, as well as that on molecules related to endogenous metabolism, such as lipids, peptides, and proteins. Of the various ion sources available for MSI, the most popular are matrix-assisted laser desorption ionization, secondary ion mass spectrometry, and desorption electrospray ionization, and modifications or derivatives of these sources are still emerging. MSI-based techniques provide new ideas and directions for the molecular typing of tumors, as well as knowledge on the metabolism of related antitumor drugs.
    The process of MSI analysis generally involves tissue acquisition, section preparation, mass spectrometry ionization, map acquisition, and data analysis, with the most crucial step being sample handling to preserve the original chemical and location information of the analytes. The sample preparation steps are sample collection, storage, and slicing, tissue pretreatment, and matrix spraying. This review focuses mainly on the preparation of biological specimens for MSI analysis and the recent progress made in breast cancer research with this technology. With regard to sample preparation, four aspects are discussed: small-molecule samples, macromolecular samples, paraffin-embedded samples, and matrix spraying methods. To solve the difficulties associated with small-molecule sample processing, including the low extraction efficiency for certain lipids and matrix interference in the low-molecular-weight region, the addition of a cationic reagent to the extractant, the use of a new matrix, and tissue derivatization have been used. In the review of macromolecular sample processing, several different washing protocols are summarized. With regard to paraffin-embedded samples, the solutions to several common problems are reviewed. Additionally, the application of MSI to three models associated with breast cancer research is discussed, viz. cell models, animal models, and clinical tumor samples. For these models, MSI technology is used to evaluate the penetration and metabolism of antitumor agents in breast cancer, which can better reflect the malignant transformation of cells and changes in the microenvironment. With regard to lipid molecules, the use of MSI to study differences in their spatial distribution may provide a better understanding of the relationship between lipid metabolism and cancer. This review also provides important information for accurate molecular typing and drug screening in cancer research. Analytically, the tissue preparation method, tissue storage conditions, instrumentation choice, and experimental parameters have all been associated with variability in the imaging and mass-spectral qualities of MSI, thereby affecting the performance of the method. Large-scale studies using diverse sample cohorts are therefore needed to properly evaluate the robustness of MSI molecular markers and workflows for the clinical diagnosis and characterization of breast cancer variants. Our review provides strong evidence that MSI is a reliable, highly reproducible, and rapid technique for the diagnosis of breast cancer biopsies and may be useful in clinical application.

    Articles
    Covalent organic framework functional materials and their applications in glycopeptide enrichment
    SHENG Qianying, ZHOU Yang, ZHAO Zhiquan, WANG Yaohui, LI Weicheng, KE Yanxiong, LAN Minbo, QING Guangyan, LIANG Xinmiao
    2021, 39 (6):  588-598.  DOI: 10.3724/SP.J.1123.2021.02001
    Abstract ( 193 )   HTML ( 40 )   PDF (6811KB) ( 109 )  
    Supporting Information

    Protein glycosylation is among the most important post-translational modifications in living organisms and the research in the field of protein glycosylation continues to garner attention. Currently, the efficient separation and enrichment of glycoproteins and glycopeptides is the primary challenge of glycoproteomics research. The number of glycoproteins is small in complex biological samples. Moreover, the presence of highly-abundant, non-glycosylated, and modified peptides makes the detection of low-abundance glycopeptides more difficult. Therefore, efficient glycopeptide enrichment methods are required to improve the detection of these compounds. The development of highly selective glycopeptide enrichment tools is important to efficiently capture glycoproteins or glycopeptides at the molecular level. Compared with traditional glycopeptide-enriched materials, covalent organic framework materials have the advantages of large specific surface area and rich modification sites, thereby exhibiting great application potential in the field of glycopeptide enrichment. In this study, a novel covalent organic framework material (O-T-D-COFs) was prepared and applied for selective glycopeptide enrichment. We applied the solvothermal method, using 2,5-dimethoxy benzene-1,4-2 formaldehyde and 1,3,5-Tris(4-aminophenyl) benzene, to synthesize imino-based COFs. The Schiff base generated via copolymerization condensation reaction constitutes the framework of the material. Next, the synthesized intermediate material was oxidized to improve the enrichment performance of the material. The functional, specific glycopeptide-binding groups were modified on the COF channels and the structure of the material was characterized using scanning and transmission electron microscope, as well as infrared spectrum and solid-state nuclear magnetic resonance. The enrichment conditions comprised the loading and elution steps, including the optimization of the elution conditions. We could observe the clear profile of 32 glycopeptides derived from human serum immunoglobulin G (IgG) tryptic digests with a significantly improved signal-to-noise (S/N) ratio. We applied a complex sample system to verify the enrichment selectivity of the material when the molar ratios of the IgG and bovine serum albumin (BSA) tryptic digest mixtures reached 1∶50. In addition, we investigated the enrichment performance of the detection limit, enrichment capacity, recovery rate of the material, and the application potential in glycopeptides enrichment using real samples. The material showed a good detection limit (2.5 fmol/μL), an ideal enrichment capacity (120 mg/g), and enrichment recovery (103.5%±6.6% and 101.5%±10.4%). We identified a total of 86 glycopeptides derived from 53 glycoproteins with 94 N-glycosylation sites from only 1 μL human serum. The O-T-D-COFs exhibited a good glycopeptide separation and enrichment potential, indicating that the COF material has promising application potential in glycoproteomics.

    Preparation of branched polyethyleneimine-assisted boric acid-functionalized magnetic nanoparticles and its application to selective enrichment of ginsenoside Re
    LI Xue, YAN Zhifeng, LI Longzhu, MA Tao, CHEN Yang
    2021, 39 (6):  599-606.  DOI: 10.3724/SP.J.1123.2020.11005
    Abstract ( 118 )   HTML ( 22 )   PDF (3157KB) ( 74 )  

    Panax ginseng has a 5000-year-long history as a traditional herbal medicine in Eastern Asia and North America. It is also known as crown jewel in traditional Chinese herbs because of its wide pharmacological properties. Ginsenosides, a class of saponins containing triterpene aglycones and various sugar moieties, are the main active components of ginseng. Considering the low abundance of ginsenosides and other abundant interferences, separation of ginsenosides is essential prior to further analysis. Recently, our group demonstrated the potential of a boronate affinity material for the selective enrichment of ginsenosides. However, conventional boronate affinity materials suffer from an apparent drawback. The binding strength of boronic acids toward cis-diol-containing compounds is low, with dissociation constants (Kd) ranging from 10-1 to 10-3mol/L. Thus, it is necessary to develop boronate affinity materials with high binding strength. In this study, we developed polyethyleneimine (PEI)-functionalized boronate affinity magnetic nanoparticles (BA-MNPs) for the selective enrichment of ginsenosides. Branched PEI was applied as a scaffold to amplify the number of boronic acid moieties, while 3-formylphenylboronic acid, which shows high affinity toward cis-diol-containing molecules, was used as the affinity ligand. In addition, the presence of the multi-glycan structure of ginsenoside leads to higher binding affinity between the PEI-BA-MNPs due to the synergistic multivalent binding effect. Combining with high performance liquid chromatography, a method for the selective analysis of ginsenosides was established. With ginsenoside Re as the representative and under the optimized conditions for magnetic solid-phase extraction, the developed method showed good linearity in the range of 50-800 μg/L, with a linear correlation coefficient (R2) of 0.9681. At different spiked levels (0.1-10 mg/L), the recoveries were in the range of 91.5%-117.3%, and the relative standard deviations (RSDs) ranged from 7.2% to 13.4%. Since the PEI-BA-MNPs exhibited significantly improved binding strength toward ginsenosides, they could extract trace glycoproteins. After enrichment, a 50-fold improvement in the sensitivity was achieved. In addition, the PEI-BA-MNPs maintained at least 72% of their original binding capacity after five consecutive uses. Finally, the developed method was applied to the determination of ginsenoside Re in commercial medicine (Qipi oral liquid). As opposed to the tedious and time-consuming sample preparation in the standard method (Pharmacopoeia of the People’s Republic of China, 2015; ChP2015), the present protocol allowed for direct enrichment of the diluted commercial medicine with PEI-BA-MNPs. The magnetic separation made the overall experiment much simpler than the standard ChP2015 method. After washing and elution, the enriched ginsenoside Re was eluted and subjected to HPLC-UV analysis. The results obtained with the developed method (0.27%) were similar to those of ChP2015 (0.31%). We have experimentally demonstrated that PEI-BA-MNPs are ideal affinity sorbents for the selective enrichment of ginsenosides owing to their significant advantages, including high affinity, excellent selectivity, easy manipulation, high binding capacity, and fast binding equilibrium. As many saponins contain sugar side chains, we foresee a promising prospect for the proposed method in real-world applications.

    Preparation and application of chiral silica gel spheres based on L-glutamic
    XIONG Wanqi, PENG Bo, DUAN Aihong, YUAN Liming
    2021, 39 (6):  607-613.  DOI: 10.3724/SP.J.1123.2020.07034
    Abstract ( 153 )   HTML ( 29 )   PDF (3849KB) ( 94 )  

    Inorganic mesoporous silica gel spheres, which possess sufficient mechanical strength, thermal stability, and mobile phase endurance, are the most important and widely used materials for column packing in high performance liquid chromatography (HPLC). However, amorphous silica gel is generally reported as an inorganic chiral silica gel, and spherical all-inorganic chiral silica gel has not been reportedly used as the chiral stationary phase for HPLC. In this paper, inorganic spherical mesoporous silica gel was used in the method of polymerization-induced colloid aggregation (PICA), with silica sol as the raw material and L-glutamic acid (L-Glu) as the chiral monomer, to obtain mixed spheres of urea-formaldehyde resin and colloidal silica in a chiral environment. After high-temperature calcination (at 550 ℃) to remove the resin, inorganic mesoporous silica gel spheres based on L-Glu were prepared. Elemental analysis revealed that the prepared L-Glu chiral silica gel spheres were calcined completely, indicating that there were no organic constituents. Scanning electron microscopy (SEM) images of the silica gel spheres showed that the surface of the silica gel spheres was not smooth, with a uniform particle size of 3.0-4.5 μm. Transmission electron microscopy (TEM) images showed that the pore size distribution of the synthetic silica gel spheres was uniform due to the accumulation of pores. Nitrogen adsorption tests revealed that the specific surface area of L-Glu chiral silica gel spheres was 117.844 m2/g, the pore volume was 0.411 cm3/g, and the average pore size was 12.312 nm. All the characterizations indicated that the inorganic chiral mesoporous silicon had a regular spherical shape. The silica gel spheres possess frameworks and pore structures, providing a chiral microenvironment that is suitable as a chiral stationary phase for separating racemic compounds by HPLC. Because of the chiral pore structure and frameworks, the enantiomers were retained to different degrees and separation was achieved. The porous structure also increased the contact surface between the racemates and the active sites of the inner wall and improved the separation efficiency. Hydrogen bonding between the chiral stationary phase and the racemates, dipole interactions, and van der Waals forces were also involved in enantiomer resolution. An HPLC column was prepared with L-Glu chiral silica gel as the stationary phase and n-hexane-isopropanol (9∶1, v/v) as the mobile phase. Fifteen racemic compounds were successfully separated on the chiral HPLC column, including seven racemic compounds for baseline separation, at a flow rate of 0.1 mL/min using 254 nm as the detection wavelength at 25 ℃. The separation of 10 benzene position isomers was successfully achieved, and eight of the benzene position isomers reached baseline separation. Experimental results showed that the chiral silica gel spheres possess sufficient mechanical strength and thermal stability, along with good chiral recognition ability and the ability to separate positional isomers. Compared with ordinary silica gel, these chiral silica gel spheres afforded better chiral separation and better separation of benzene position isomers, without further modification. The preparation of this chiral stationary phase also has the advantages of being cheap, convenient, and feasible.

    Simultaneous determination of 29 pesticides residues in bayberry by pass-through solid-phase extraction and ultra-performance liquid chromatography-high resolution mass spectrometry
    PAN Shengdong, GUO Yanbo, WANG Li, ZHANG Dandan
    2021, 39 (6):  614-623.  DOI: 10.3724/SP.J.1123.2020.11011
    Abstract ( 270 )   HTML ( 76 )   PDF (2499KB) ( 207 )  

    A rapid and accurate analysis method based on PRiME HLB pass-through solid-phase extraction (SPE) and ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) was developed for the determination of 29 pesticide residues in bayberry samples. The bayberry samples were first extracted using acetonitrile by vortexing; then, the extract solution was salted out and purified by PRiME HLB pass-through solid-phase extraction (SPE) cartridges. Chromatographic separation was subsequently carried out on a Waters ACQUITY UPLC HSS T3 column (100 mm×2.1 mm, 1.8 μm) using 5 mmol/L ammonium acetate in water and acetonitrile as the elution solvent. The electrospray ion source in positive (ESI+) mode and full mass-data-dependent MS2 (full mass-ddMS2) mode were used for quantification by the matrix-matched external standard method. The LC conditions were first optimized, and two analytical columns, Waters ACQUITY UPLC HSS T3 and Waters ACQUITY UPLC BEH C18, were investigated for the 29 pesticides. The results indicated that the Waters ACQUITY UPLC HSS T3 column showed better chromatographic retention. Moreover, composites of the mobile phase were also studied. Compared to the acetonitrile-formic acid aqueous solution system and acetonitrile-formic acid-ammonium acetate aqueous solution system, the acetonitrile-ammonium acetate aqueous solution system used as the mobile phase exhibited much better chromatographic behavior for most of the 29 pesticides. In particular, the MS responses of some of the target pesticides were significantly improved when using the ammonium acetate-acetonitrile system as the mobile phase. In addition, the sample pretreatment conditions for the 29 pesticides in bayberry samples were systematically optimized. The matrix effect (ME) for three different types of purification methods were applied to evaluate the purification efficiency for the 29 pesticides in the bayberry samples. The following results were obtained from the post-spiking experiments: (1) For graphitized carbon (GCB) SPE, the post-spiking recoveries of 29 pesticides in the bayberry samples were generally low, less than 60%. (2) For the QuEChERS method, the recoveries of most target pesticides improved. The pesticide ratio with recoveries ranging from 70% to 120% was found to be 41%; however, the pesticide ratio with recoveries of less than 60% was still high (35%). (3) For the PRiME HLB-based pretreatment method, the recoveries of the 29 pesticides obviously improved. The pesticide ratio with recoveries between 70% and 120% was up to 76%, while the pesticide ratios were only 14% and 10% for post-spiking recoveries of 60%-70% and >120%, respectively. Meanwhile, the recoveries of all 29 pesticides were found to be more than 60%. Therefore, the PRiME HLB-based method was better than the GCB SPE and QuEChERS methods for pretreatment of the 29 pesticides in the bayberry samples. In addition, the PRiME HLB-based pretreatment process does not require tedious operation processes such as activation, balance, and elution, and thus, the sample pretreatment time is greatly shortened.
    Under the optimal conditions, the 29 target pesticides showed good linearity in the range of 1.0-200.0 μg/L, with correlation coefficients (R2) higher than 0.999. The limits of detection (LODs) were 2.0 μg/kg for the 29 target pesticides. The recoveries of the pesticides spiked in the bayberry samples were in the range of 69.2%-135.6% at 6, 200, and 400 μg/kg, respectively, while the relative standard deviations (RSDs) in the range of 0.7%-14.6%. The proposed method based on PRiME HLB-pass through SPE-UPLC-HRMS was adopted to determine these 29 pesticides in 30 bayberry samples purchased from local and online markets. According to the results, pesticides such as methamidamine, difenoconazole, and tebuconazole were frequently detected in the bayberry samples. However, the maximum residue limits (MRLs) of methamidamine, difenoconazole, and tebuconazole in bayberry samples were not provided in GB 2763-2019. In summary, the developed method is fast, simple, sensitive, and accurate, and it can be applied for daily monitoring of pesticides in bayberry samples.

    Determination of tetracycline and fluoroquinolone residues in fish by polydopamine nanofiber mat based solid phase extraction combined with ultra performance liquid chromatography-tandem mass spectrometry
    LIANG Sihui, DAI Hairong, ZHANG Huayin, LI Jian, ZHANG Qiuping, XU Qian, WANG Chunmin
    2021, 39 (6):  624-632.  DOI: 10.3724/SP.J.1123.2020.12026
    Abstract ( 324 )   HTML ( 39 )   PDF (4514KB) ( 202 )  

    Tetracyclines and fluoroquinolones are common antibacterial drugs used in aquaculture, and their residues may pose a risk to human health. The low concentration of drug residues and complex matrixes such as fats and proteins in aquatic products necessitate the urgent development of efficient sample pretreatment methods. Solid phase extraction (SPE) is the most common sample pretreatment method, in which the core is an adsorbent. Compared with traditional SPE adsorbents, nanofiber mat (NFsM) has more interaction sites because of their large specific surface area. Furthermore, NFsMs modified with specific functional groups can significantly improve the extraction efficiency of tetracyclines and fluoroquinolones. Polydopamine (PDA) is spontaneously synthesized by the oxidative self-polymerization of dopamine-hydrochloride in alkaline solutions (pH>7.5). Because of its rich amino and catechol groups, PDA can form π-π stacking, electrostatic attraction, hydrophobic interaction, and hydrogen bonding interactions with target molecules. By exploiting the above advantages, polystyrene (PS) NFsM, as a template, was prepared by the electrostatic spinning method, and PDA-PS NFsM was obtained by functional modification of PDA through self-polymerization. Fourier transform infrared spectroscopy (FT-IR) and field-emission scanning electron microscopy (FESEM) were used to characterize the synthesized PS NFsM and PDA-PS NFsM. It was proved that PDA was successfully modified on the PS NFsM, with the SEM images revealing a rough outer core shell structure and an inner honeycomb structure. Subsequently, the handmade SPE column with PDA-PS NFsM was completed. A novel and efficient screening analytical method based on PDA-PS NFsM for the simultaneous determination of three tetracyclines (tetracycline (TET), chlortetracycline (CTC), and oxytetracycline (OTC)) and three fluoroquinolones (enrofloxacin (ENR), ciprofloxacin (CIP), and norfloxacin (NOR)) in fish by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established. The SPE procedure was optimized to develop an efficient method for sample preparation. Evaluate parameters including the amount of NFsM usage, ionic strength, flow rate of the sample solution, composition of eluent, and breakthrough volume were investigated. Only (20±0.1) mg of PDA-PS NFsM was sufficient to completely adsorb the targets, and the analytes retained on NFsM could be eluted by 1 mL of formic acid-ethyl acetate (containing 20% methanol) (1∶99, v/v). The residues were redissolved in 0.1 mL 10% methanol aqueous solution containing 0.2% formic acid. In addition, no adjustment of the pH and ionic strength of the sample solutions was required, and the breakthrough volume was 50 mL. The limits of detection (LODs) and limits of quantification (LOQs) of the six target compounds were measured at 3 times and 10 times the signal-to-noise ratio (S/N), respectively. The LODs and LOQs were 0.3-1.5 μg/kg and 1.0-5.0 μg/kg, respectively. The linear ranges of the six target compounds were LOQ-1000 μg/kg, and the coefficient of determination (R2) was greater than 0.999. To evaluate the accuracy and precision, blank spiked samples at three levels (low, medium, and high) were prepared for the recovery experiments, and each level with six parallel samples (n=6). The recoveries ranged from 94.37% to 102.82%, with intra-day and inter-day relative standard deviations of 2.38% to 8.06% and 4.10% to 9.10%, respectively. To evaluate the purification capacity of PDA-PS NFsM, the matrix effects before and after SPE were calculated and compared. Matrix effects before SPE were -12.98% to -38.68%. After the completion of SPEbased on PDA-PS NFsM, the matrix effect of each target analyte was significantly reduced to -2.15% to -7.36%, which proved the significant matrix removal capacity of PDA-PS NFsM. Finally, the practicality of this method was evaluated by using it to analyze real samples. This SPE method based on PDA-PS NFsM is efficient, practical, and environmentally friendly, and it has great potential for use in the routine monitoring of drug residues in fish.

    Confirmation of unknown additives in enrofloxacin powder
    XIONG Yue, WANG Cheng, LIU Jianhui, SHI Huihui, WANG Yunhua, SUN Yao, YU Jie
    2021, 39 (6):  633-641.  DOI: 10.3724/SP.J.1123.2020.09007
    Abstract ( 131 )   HTML ( 21 )   PDF (1463KB) ( 84 )  

    In order to ensure the safety of animal food and regulate the application of veterinary drugs, it is necessary to strictly monitor their content, and to constantly improve the methods used to detect non-specific, illegally added substances in veterinary drugs. A study about the screening, analysis, and confirmation of illegal additives in enrofloxacin powder (used for aquaculture) using non-targeted analysis technology was introduced. First, an enrofloxacin powder test solution under acidic conditions was prepared by adding formic acid, and an enrofloxacin powder test solution under alkaline conditions was prepared by adding sodium carbonate. An ultra-performance liquid chromatography with photodiode array detector (UPLC-PDA) was used to assay the test solutions for the presence of unknown additives. Results revealed two high-response unknown peaks in the acidified test solution, with retention times of 1.870 min and 5.122 min respectively. In the alkalized test solution, only one high-response unknown peak was found, with a retention time of 5.122 min. The ultraviolet spectrum characteristic peaks at 5.122 min in acidified and alkalized test solutions were similar, but the peak area in the alkalized test solution was almost ten times that in the acidified solution. Two potential unknown substances were detected. Unknown substance 1 (1.870 min) and unknown substance 2 (5.122 min) may transform under acidic or alkaline conditions. Ultra-performance liquid chromatography-time of flight high resolution mass spectrometry (UPLC-TOF-HRMS) was used to analyze the unknown compounds in more detail. The acidified and alkalized test solutions were detected in the positive and negative ion modes of mass spectrometry, respectively. Accurate mass of the precursor ion, characteristics of secondary ion fragments, and isotopic intensity ratio of the two unknown substances were collected. This information was imported into SCIEX OS software. The molecular formula of the parent ion of unknown substance 2 was found to fit to C11H8O2, and its secondary fragment structure may contain a benzene ring and two carbonyl groups, with a propylene structure connected to them through ring formation. From this, unknown substance 2 was presumed to be a menadione. The molecular ion peak of unknown substance 1 was found to fit to C11H9O5S-, only HSO3- was collected in the secondary fragments, and the missing part was consistent with unknown substance 2. Considering the most common derivatives of menadione, unknown substance 1 can be proposed to be menadione sodium bisulfite. Finally, we used menadione and menadione sodium bisulfite as reference substances in a comparative study. The same treatment method was used to prepare menadione, menadione sodium bisulfite reference solution, and enrofloxacin powder test solution. After UPLC-PDA detection, unknown substance 1 and menadione sodium bisulfite, unknown substance 2 and menadione, were found to have similar retention times and UV spectra. When the reference solution was added to the enrofloxacin powder test solution, the peak purity of the unknown substance did not change, and were all single peaks. UPLC-TOF-HRMS analysis revealed that the retention time of unknown substance 1 was consistent with that of sodium menadione bisulfite: compared to its accurate mass number in theory, the mass accuracy error was 1.0×10-6, and the matching degree of fragmentation information in the library was 100%. The retention time of unknown substance 2 was same as the menadione: compared to its accurate mass number in theory, the mass accuracy error was 0.6×10-6, and the matching degree of fragmentation information in the library was 99.7%. The structures of unknown substances 1 and 2 were confirmed.
    Menadione sodium bisulfite is known to participate in the synthesis of thrombin in the liver, and also promotes the formation of prothrombin, and accelerates coagulation. The indication of enrofloxacin powder (used for aquaculture) is the treatment of hemorrhage and sepsis in aquaculture animals such as fish and eel. The pharmacological effects of the two drugs correspond to each other, which can cause producers to take risks and add them illegally. With the strict supervision and severe restrictions on the addition of veterinary drugs, illegal additives are becoming more and more subtle. Conventional targeted analysis does not always meet the monitoring requirements. In this paper, the non-targeted analysis of unknown substances using UPLC-PDA combined with UPLC-TOF-HRMS is described in detail. The results may provide a technical reference for screening and identifying illegal additives in drugs, food, health care products, cosmetics, and pesticides.

    Analysis of chemical components of Chinese medicine Ligustici Radix by achiral-chiral liquid chromatography-predictive multiple reaction monitoring
    XU Xia, LI Ting, JIA Jinru, TANG Huiting, LI Jun, ZHAO Yunfang, SONG Yuelin
    2021, 39 (6):  642-651.  DOI: 10.3724/SP.J.1123.2020.08024
    Abstract ( 132 )   HTML ( 23 )   PDF (2562KB) ( 89 )  

    Ligustici Radix (Chinese name: maoqianhu) consists of the dried roots of Ligusticum brachylobum Franch., which is mainly distributed in the Yunnan and Sichuan provinces. This herbal medicine has been primarily used for the treatment of cough in traditional Chinese medicine. Ligustici Radix is rich in coumarin derivatives. Interestingly, enantiomers and diastereomers are widely used for these coumarins, thus posing a great challenge for in-depth chemical profile characterization. In the present study, a new analytical platform, achiral-chiral liquid chromatography-tandem mass spectrometry (achiral-chiral LC-MS/MS) was configured to profile the chemical composition of Ligustici Radix. Because achiral and chiral columns were serially coupled, especially enantiomers, both chemically and enantiomerically selective separations could be accomplished simultaneously. The newly configured achiral-chiral LC-MS/MS platform did not require any electronic valve; hence, it could overcome the drawbacks of heart-cutting achiral-chiral two-dimensional LC, i. e., sophisticated instrumentation and limited reproducibility due to the use of electronic valve(s) and the undesired retention time shift across different analytical runs. Some available candidates for chemically selective or enantiomerically selective separation were assayed; then, Capcell core RP-C18 column that was packed with core-shell type particles, and AD-RH column embedding amylose coated particles were employed the achiral and the chiral columns, respectively. The narrow-bore core-shell RP-C18 column served as the front tool to achieve efficient chemoselective separation of coumarin analogs, and enantioselective enantiomers were obtained by using a wide-bore AD-RH chiral column. The predictive multiple reaction monitoring (predictive MRM) mode allowed for the sensitive detection of potential components, and an enhanced product ion (EPI) scan, which was a unique function of Qtrap-MS, was programmed to record the MS2 spectra for all captured signals and thus aid structural annotation. Online energy-resolved mass spectrometry (online ER-MS) was introduced to pursue the suitable collision energy for each compound; in particular, inferior collision energy instead of the optimal one was utilized to suppress the response of the primary components such as praeruptorin A, B and pteryxin. The criteria to judge enantiomers or not included identical quantitative and qualitative precursor-to-product ion transitions, identical quantitative versus qualitative responses, and longer retention times from achiral-chiral LC over single-column achiral LC. As a result, a total of sixty components were observed and structurally identified. In particular, enantiomerically selective separations were achieved for eight enantiomers, cis-khellactone (CKL), qianhucoumarin G (QC-G), pteryxin (Pte), praeruptorin A (PA), cis-3'-isovaleryl-4'-acetylkhellactone (IAK), praeruptorin B (PB), praeruptorin E (PE), and cis-3',4'-diisovalerylkhellactone (DIK). Notably, none of the enantiomers were present as racemates; instead, the proportion of one enantiomer in each pair was greater than the other. Achiral-chiral LC-predictive MRM is a feasible choice for the quantitative and qualitative analyses of Ligustici Radix as well as other herbal medicines characterized by enantiomers and diastereomers.

    Determination of thiram in wheat flour and flour improvers by high performance liquid chromatography-diode array detection
    WANG Xuxin, ZHOU Shukun, LI Xiaomin, ZHANG Qinghe
    2021, 39 (6):  652-658.  DOI: 10.3724/SP.J.1123.2020.07024
    Abstract ( 183 )   HTML ( 31 )   PDF (1331KB) ( 132 )  

    Thiram is an important dithiocarbamate (DTC) fungicide. In the United States and the European Union, the limit range of thiram is 0.1-15 mg/kg in fruits and vegetables, but there is no specific limit for grains. The maximum residue limit (MRL) for wheat is 1 mg/kg (calculated as carbon disulfide, CS2) in the National Food Safety Standard (GB 2763-2019). At present, the relevant regulation methods in China are targeted at the detection of dithiocarbamates and are incapable of detecting thiram specifically. CS2 is produced by the reaction of dithiocarbamate and acid, and it is then determined by spectrophotometry or GC; this renders the quantification of dithiocarbamate indirect. HPLC and HPLC-MS/MS methods are also reported for the detection of thiram. Most of the literature focuses on the determination of thiram in vegetables, fruits, soil, etc. In these methods, thiram is converted into dimethyldithiocarbamate (DMD) anions in an alkaline buffer solution, and DMD can be determined by HPLC-UV or LC-MS. However, ziram can also be converted into the DMD anion under alkaline conditions. Therefore, thiram cannot be distinguished from ziram, and this may produce false-positive results. Research has shown that in the presence of sulfite, thiram is converted into a DMD-sulfite adduct, which can be a marker for the selective determination of thiram. Furthermore, thiram can be directly detected by HPLC and HPLC-MS/MS after extraction with dichloromethane, chloroform, hexane, cyclohexane, ethyl acetate, or methanol and clean-up by solid phase extraction in vegetables and fruits. However, until now, few studies have reported the determination of thiram in wheat flour and flour improvers. Therefore, it is of great importance to develop a method for thiram in wheat flour. In this study, an analytical method based on HPLC-DAD was developed for the determination of thiram in wheat flour and flour improvers. The wheat flour and flour improver samples were extracted using acetonitrile. After shaking for 15 min, the samples were ultrasonicated for 10 min in an ice-water bath. The supernatant was filtered before separation on a ZORBAX plus-C18 column (150 mm×4.6 mm, 5 μm). The samples were eluted with a water-acetonitrile solvent system and detected at 280 nm. In this research, the extraction solvent, extraction solvent volume, ultrasonic conditions, chromatographic column, determination wavelength, and mobile phase were optimized. The retention times and UV spectra were used for qualitative analysis, and the external standard method was used to quantify thiram. Stability tests of standard stock solutions, a series of standard solutions, and extraction solutions were also performed. The standard stock solutions could be stored for at least 21 d, and the series of standard solutions could be stored for 14 d under refrigeration at 4 ℃. The standard solution was either exposed to light at room temperature for 4 h or kept in dark at room temperature for 48 h, and no obvious degradation was observed. This revealed that thiram was stable in acetonitrile solution during our investigation. It was suggested that the extraction solution should be analyzed as soon as possible. The linear range was 0.30-30.0 μg/mL. The peak area of the analyte showed a good linear relationship with its corresponding concentration, and the correlation coefficient (r2) was 0.99999. When the spiked levels were 1.5, 3.0, and 15 mg/kg, the spiked recoveries of thiram were 89.6%-98.3%, with relative standard deviations of 1.6%-3.9% (n=6). The limits of determination and quantification for thiram were 0.5 mg/kg and 1.5 mg/kg, respectively. The results revealed that this method is simple, rapid, and specific, in addition to having high precision, good repeatability, and a low limit of detection. The method is thus suitable for the daily routine analysis of thiram in wheat flour and flour improvers.

    Determination of 118 pesticide residues in dried wolfberry by gas chromatography-triple quadrupole mass spectrometry in dynamic multiple reaction monitoring mode
    YANG Zhimin, ZHANG Wen, WU Fuxiang, WANG Xingzhi, XU Xiaohui
    2021, 39 (6):  659-669.  DOI: 10.3724/SP.J.1123.2020.07028
    Abstract ( 179 )   HTML ( 40 )   PDF (1941KB) ( 168 )  

    Wolfberry fruit is very popular among consumers because it is rich in nutrients. However, it is vulnerable to diseases caused by insect pest feeding and microbial pathogen infection. Pesticide application is the main approach for controlling wolfberry disease; however, various concerns have been raised regarding chemical residues in foodstuffs and consequent environmental contamination. Matrix interference is a significant challenge in trace analysis. Chromatography, coupled with MS techniques with high sensitivity and selectivity, proved to be a powerful tool for the detection of multi-pesticide residues in complex matrices. The traditional MRM mode has been gradually replaced by the dynamic MRM (dMRM) mode, which could dynamically allocate the retention time window of each target pesticide, significantly adjust the loading cycle time of multiple compounds, and improve the analysis efficiency. The QuEChERS pretreatment method, based on dispersive solid-phase extraction, has been widely used in the detection of pesticide residues in food because it is simple and rapid. In this study, a robust and high-throughput method was established for the simultaneous determination of 118 pesticide residues in wolfberry using the modified QuEChERS method, combined with gas chromatography-triple quadrupole mass spectrometry in dMRM mode. The optimal pretreatment method was determined by comparing the recovery rates obtained with different volumes of added water (5, 10, 15, and 20 mL), different extraction solvents (acetone, n-hexane, acetonitrile, and acetonitrile containing 0.1% formic acid), different extraction temperatures (normal temperature, -18 ℃ for 10 min and 20 min), water absorbent (anhydrous magnesium sulfate), and purification with primary secondary amine (PSA) and octadecylsilane (C18). The results showed that 5 g samples were rehydrated with 10 mL ultrapure water, extracted with 10 mL acetonitrile, frozen at -18 ℃ for 10 min, partitioned with buffer system salt package containing 4.0 g anhydrous magnesium sulfate, 1.0 g sodium chloride, 1.0 g sodium citrate, and 0.5 g disodium citrate, purified up with 800 mg MgSO4, 150 mg PSA, and 150 mg C18. Pesticides were separated on a capillary column HP-5MS UI (30 m×0.25 mm×0.25 μm), and quantified by a matrix-matched external standard method. The results showed that the 118 pesticides exhibited good linearity in the range from 20 to 640 μg/L, with correlation coefficients R2≥0.9923. The limits of detection and quantification were 0.006-28.344 μg/kg and 0.021-94.480 μg/kg, respectively. The average recoveries at four spiked levels of 0.01, 0.04, 0.10, and 0.20 mg/kg were in the range of 64.97%-126.21%, with relative standard deviations (RSDs) of 0.69%-18.86% (n=6). The results of the matrix effect showed that 82% of the pesticides exhibited matrix enhancement effects, while others showed matrix inhibition effects. In addition, 9% of the pesticides showed a strong matrix effect, while others showed moderate or weak matrix effects. The matrix effects could be reduced by the matrix-matched standard curve method. The proposed method was employed for the analysis of 10 real samples purchased from local markets. The results demonstrated that pesticides were detected in all the samples, 22 pesticides were detected in total, and 3-12 pesticides were found in a single sample. Chlorpyrifos, fipronil, cypermethrin, pyridaben, and difenoconazole were detected at high detection rates. The captan content in a batch of samples was 1.4066 mg/kg. Thus, the optimized method is simple, fast, accurate, and reliable, and it is suitable for the routine detection and rapid screening of the multi-pesticide residues in wolfberry.

    Spectrum peak detection algorithm based on trend accumulation without base deduction
    JIA Menghan, HUI Zhaoyan, ZHANG Hui, GAO Yu, TONG Meiqi, MA Yinan
    2021, 39 (6):  670-677.  DOI: 10.3724/SP.J.1123.2020.11009
    Abstract ( 165 )   HTML ( 20 )   PDF (3835KB) ( 92 )  

    The detection and analysis of spectral peaks play an important role in research on chromatography technology. However, in the process of collecting and transmitting chromatographic data, it is very difficult to detect spectral peaks owing to the interference of different levels of noise. Most of the traditional spectral peak detection algorithms follow three steps: spectral smoothing, baseline correction, and spectral peak recognition, which require high denoising and curve smoothing, and therefore increase the complexity of the algorithm. In addition, a traditional spectrum peak detection algorithm generally defines the shape of the spectrum peak by applying the base deduction method, and divides the spectrum peak into a single peak, overlapping peaks, and so on. Different detection methods are used for different types of spectral peaks, which lead to the shortcomings of traditional peak detection algorithms, such as high complexity, low automation, and susceptibility to distortion. Therefore, this study proposes a novel peak detection algorithm developed using a different point of view. The algorithm omits the base subtraction and spectral peak classification steps and instead detects spectral peaks directly based on the source data curve. In a traditional spectrum peak detection algorithm, the spectrum peak classification depends on determining a baseline. If the baseline is adjusted, the baseline will fit the spectrum peak more closely. At this time, the overlapping peaks can be regarded as two connected peaks. However, there is no so-called baseline in the source data curve, and therefore the proposed algorithm cannot classify the spectral peaks using the baseline approach. Instead, an obvious bulge or depression in the source curve is considered to be the spectral peak. This algorithm essentially performs three steps: discrete difference, trend accumulation, and searching for all peaks. First, the difference between adjacent data is obtained using a discrete difference process. The difference value is compared with 0, and either a 1 or -1 value is used to replace the difference value to reflect the data fluctuation trend. The signals representing the trend are accumulated, and the spectrum peak is located according to the sum of the accumulated signals. The algorithm uses three-point location; that is, the peak starting point, extreme point, and peak end point are used to describe the position of a spectral peak. Finally, according to the spectrum peaks obtained in the previous step, the magnitude of each peak is calculated, and the spectrum peaks are screened by a sorting method. In this manner, the algorithm skips the base subtraction part and obtains the spectrum peak directly. Therefore, to obtain the base part, the peak subtraction method is applied. This study used the C language to design and write the algorithm, and nitrogen adsorption and desorption chromatographic curves measured by several dynamic specific surface area analyzers were detected and analyzed. The results indicate that the proposed algorithm can accurately distinguish the peak part from the base part, and is robust to data curve burr, vibration, and other types of noise. The three-point location of the spectrum peak is very accurate and is not affected by its complex morphology. Therefore, it has strong universality. Compared with other algorithms, this algorithm has the advantages of accurate positioning, clear structure, and good stability and reliability. The application of the proposed peak detection methods such as base-free deduction and trend accumulation, in the adsorption and desorption chromatographic curve and has been proven effective in the determination of absorption and desorption chromatographic peaks.