Loading...

List of Issues

    Chinese Journal of Chromatography
    2023, Vol. 41, No. 5
    Online: 08 May 2023

    For Selected: Toggle Thumbnails
    Annual Review
    Annual review of capillary electrophoresis technology in 2022
    WEN Yalun, SHAO Yuchen, ZHAO Xinying, QU Feng
    2023, 41 (5):  377-385.  DOI: 10.3724/SP.J.1123.2023.02003
    Abstract ( 321 )   HTML ( 29 )   PDF (830KB) ( 186 )  

    This article provides a detailed review of capillary electrophoresis (CE) technology in 2022, summarizing a total of 881 CE technology-related articles searched from ISI Web of Science using the keywords “capillary electrophoresis mass spectrometry” or “capillary isoelectric focusing” or “micellar electrokinetic chromatography” or “capillary electrophoresis” (excluding “capillary electrochromatography”“microchip” “microfluidic” “capillary monolithic column”). The review focuses on 16 articles published in Lancet Global Health, ACS Central Science, Microbiome, Trends in Food Science & Technology, TrAC-Trends in Analytical Chemistry, Journal of Pharmaceutical Analysis, Journal of Cachexia, Sarcopenia and Muscle, Food Hydrocolloids, Science of the Total Environment, and Carbohydrate Polymers with impact factors (IFs) greater than 10.0, and 46 articles published in Analytical Chemistry, Analytica Chimica Acta, Talanta, and Food Chemistry with IFs between 5.0 and 10.0. A comprehensive overview of representative CE works published in Journal of Chromatography A, Electrophoresis, and important Chinese core journals (Peking University) with IFs<5.0 is also provided. Based on IFs, this review introduces representative works on CE to facilitate readers’ understanding of important research advances in CE technology over the last year.

    Articles
    Development of a multi-residue detection method for 27 typical pharmaceuticals and personal-care products in plants and analysis of their migration patterns in sprouts
    ZENG Yongfu, CHEN Meifang, SHAO Yu, YAN Yonghuan, ZHANG Haichao, WANG Jing, AI Lianfeng, KANG Weijun
    2023, 41 (5):  386-396.  DOI: 10.3724/SP.J.1123.2022.09017
    Abstract ( 207 )   HTML ( 26 )   PDF (3839KB) ( 113 )  

    An analytical method based on ultra-performance liquid chromatography-tandem mass spectrometry was developed for the simultaneous determination of 27 pharmaceutical and personal-care product (PPCP) residues in plants. The enrichment and cleanup of PPCPs in plants were achieved using an HLB extraction column, and the separation was performed on a BEH C18 column (100 mm×2.1 mm, 1.7 μm) with 0.1% formic acid water-acetonitrile as the mobile phase via gradient elution. PPCPs were detected with electrospray ionization mass spectrometry in positive-ion multiple-reaction monitoring (MRM) mode. The limits of detection and quantification of the 27 PPCPs in plants were 0.01-0.30 μg/kg and 0.03-0.98 μg/kg, respectively. Good linearities were observed with coefficients of determination (r2) >0.99. The spiked recoveries were between 80.8% and 122.3% with relative standard deviations (RSDs) between 1.0% and 9.9%. The method was subsequently used to study sprouts grown in different concentrations of PPCPs. A total of 10 PPCPs were detected in sprouts grown in medium with a low concentration PPCPs, 13 PPCPs were detected in sprouts grown in medium with a moderate concentration of PPCPs, and 19 PPCPs were detected in sprouts grown in medium with a high concentration of PPCPs. These results showed that plants grown in water bodies contaminated with PPCPs or irrigated with water contaminated with PPCPs absorbed and accumulated these substances and that the amount and type of PPCPs absorbed by plants were closely related to the levels of PPCPs in the external environment. Analysis of the contents of PPCPs in different plant tissues revealed a general distribution of root>stem>leaf. Haemosibutramine showed a tissue distribution of leaf>stem>root, while glibenclamide showed a distribution of root>leaf>stem; these results revealed differences in the distribution of PPCPs in plants. Calculation of the transfer factor (TF) of the PPCPs in plants demonstrated significant differences in the transferability of different PPCPs, with TF=2.34 for haemosibutramine and TF=1.25 for chlorosibutramine. The results showed that among the drugs that migrated in plants, haemonosibutramine and chlorosibutramine had the strongest migration ability in sprouts, followed by nicardipine and chlorpheniramine maleate, and amantadine, N-monodesmethyl sibutramine, carbamazepine and flumequine had the weakest migration ability. Once absorbed, these compounds were transferred to the stems and/or leaves, where they accumulate and cause potential harm by contaminating other plant organs. Therefore, PPCPs such as homosibutramine and chlorosibutramine, which easily migrate in plants, should be given extra attention in future studies. The method is simple in pre-treatment, sensitive and accurate, and can be widely applied to the detection of PPCP residues in plant samples.

    Determination of sixteen antibiotics and four β-agonists in human urine samples using ultra-performance liquid chromatography-tandem mass spectrometry based on high-throughput automatic solid-phase extraction
    LI Zhenhuan, HU Xiaojian, LU Yifu, XIE Linna, ZHU Ying
    2023, 41 (5):  397-408.  DOI: 10.3724/SP.J.1123.2022.08025
    Abstract ( 269 )   HTML ( 41 )   PDF (2008KB) ( 117 )  

    An analytical method combining high-throughput automatic solid-phase extraction with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed to determine 16 antibiotics (macrolides, tetracyclines, quinolones, and sulfonamides) and 4 β-agonists (terbutaline, salbutamol, ractopamine, and clenbuterol) in human urine samples. After thawing at room temperature, 1 mL of urine was sampled and the internal standard was added, followed by the addition of 200 μL ammonium acetate buffer and 20 μL β-glucuronidase, and the mixture was incubated at 37 ℃ overnight. Automatic solid-phase extraction was used to extract the target compounds from the urine samples, and the recoveries were compared using different solid-phase extraction 96-well plates (PRiME MCX, Sep-Pak C18, PRiME HLB), types and volumes of rinse solutions and eluents. Satisfactory recoveries of the 20 target compounds were obtained using the Oasis PRiME HLB 96-well plate, with 1.5 mL 10% (v/v) methanol aqueous solution and 2.0 mL methanol as the rinse solution and eluent, respectively. The eluent was concentrated under nitrogen gas at 45 ℃, and the recoveries of the target compounds were compared under different conditions (completely or almost dry, drying to 1 mL, and adding water as a protective agent), and the recovery rate was optimal when water was added as a protective agent.

    In this study, two types of analytical columns (ACQUITY BEH C18 and ACQUITY HSS T3) and different gradient elution procedures and mobile phases were compared. The optimal chromatographic effect was realized using an HSS T3 column (100 mm×3.0 mm, 1.8 μm) and 0.1% (v/v) formic acid aqueous solution-0.1% (v/v) formic acid in acetonitrile as the mobile phase in gradient elution at a flow rate of 0.3 mL/min. Comparing the peaks observed using different proportions of methanol aqueous solution and the initial mobile phase as the injection solvent revealed that 30% (v/v) methanol aqueous solution was the optimal solution in terms of peak shape and signal-to-noise ratio. MS was conducted using positive electrospray ionization (ESI+) in multiple reaction monitoring (MRM) mode, and the MS parameters were optimized, including the curtain (CUR) and collision gases (CAD). The standard curve obtained using this method exhibited a good linearity (correlation coefficient>0.997), and the respective limits of detection and quantification were 0.02-0.12 ng/mL and 0.06-0.41 ng/mL. At spiked levels of 0.25, 2.5, and 12.5 ng/mL, the recoveries were in the range of 81.7%-120.0% (except that of tetracycline), the intra- and inter-day RSDs (n=6) were 1.1%-11.0% and 1.2%-13.0%, respectively. Azithromycin, trimethoprim, terbutaline, salbutamol, ractopamine, and clenbuterol displayed moderate matrix effects, but all targets exhibited weak matrix effects after correction using the isotope internal standard. To evaluate the accuracy of this method, BCR-503 (containing salbutamol and clenbuterol) and internal quality control samples were used and the concentrations of salbutamol and clenbuterol were within the reference ranges. Additionally, the mean concentrations of the 20 target compounds of two different internal quality control samples after 7 measurements were in the ranges of 0.44-0.59 ng/mL (0.5 ng/mL) and 1.72-2.16 ng/mL (2.0 ng/mL), respectively, which were satisfactory. In this study, the analytical method employed automatic sample pretreatment with a 96-well solid-phase extraction plate, and the detection efficiency was considerably improved. This method displays the advantages of simple operation, ideal recovery, a high sensitivity and weak matrix effect, which satisfies the requirements for the simultaneous determination of 16 antibiotics and 4 β-agonists in human urine samples. This study provides a crucial method for use in monitoring antibiotics and β-agonists in human urine and studying their exposure characteristics and health risks.

    Determination of trace perfluorinated compounds in environmental water samples by dispersive solid- phase extraction-high performance liquid chromatography-tandem mass spectrometry using carbon nanotube composite materials
    SONG Xinli, WANG Ning, HE Feiyan, CHENG Canling, WANG Fei, WANG Jinglong, ZHANG Lihua
    2023, 41 (5):  409-416.  DOI: 10.3724/SP.J.1123.2022.09016
    Abstract ( 205 )   HTML ( 33 )   PDF (3228KB) ( 212 )  

    In this work, carbon nanotubes (CNTs) on silica rod (SiO2) composite materials were prepared to extract six perfluorinated compounds (PFCs) in real environmental water samples by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The as-synthesized sorbents, hereafter referred to as CNT@SiO2, were employed for dispersive solid-phase extraction (d-SPE). Perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorooctane sulfonate (PFOS), and perfluorodecanoic acid (PFDA) were selected as target analytes. The main extraction parameters were systematically optimized using the single-factor optimization method. The optimum adsorption parameters were as follows: adsorption time of 30 min, sorbent amount of 10 mg, pH 6 and NaCl concentration of 1.7 mol/L for sample solution, and 4 mL acetone as desorption solvent, desorption for 4 min. LC-triple quadrupole MS was conducted to quantify the selected PFCs in water samples. The mobile phase was 5 mmol/L ammonium acetate and methanol, the flow rate was set to 0.4 mL/min, the column temperature was set to 40 ℃, and the injection volume was 5.0 μL. The chromatographic separation system was equipped with a Kinetex C18 column (100 mm×2.1 mm, 1.7 μm). The mass spectrometer was operated with negative electrospray ionization in multi-reaction monitoring mode. CNT@SiO2 was prepared in five batches and used as the d-SPE sorbent, and the relative standard deviations (RSDs) of the PFC recoveries among these five batches ranged from 4.9% to 9.3%. The reusability of the CNT@SiO2 sorbent was assessed. After eight d-SPE cycles using the same sorbent, the RSDs of the PFC recoveries were 3.7%-8.2%. These results indicated that the sorbent had good stability and reusability for d-SPE. Excellent results were achieved under optimal extraction conditions. The method validation results indicated that the linear ranges were 0.4-1000 ng/L for PFNA, PFOS, and PFDA, 0.9-1000 ng/L for PFHpA, 0.7-1000 ng/L for PFHxS, and 0.6-1000 ng/L for PFOA. The correlation coefficients were 0.973-0.997. The limit of detection (LOD) and limit of quantification of the method were 0.10-0.26 ng/L and 0.33-0.87 ng/L, respectively. At 20 ng/L, the RSDs of the intra- and inter-day precisions were 2.73%-7.75% and 3.38%-8.21%, respectively. At 100 ng/L, the RSDs of the intra- and inter-day precisions were 2.95%-8.46% and 4.16%-9.14%, respectively. Finally, at 500 ng/L, the RSDs of the intra- and inter-day precisions were 2.51%-7.48% and 3.59%-9.63%, respectively. The developed method was applied to analyze six PFCs in tap water, barreled drinking water, and river water samples. PFOA and PFOS were determined in tap water at mass concentrations of 5.6 and 8.7 ng/L, respectively. No PFCs were found in barreled drinking water and river water. Satisfactory recoveries of 72.1%-109.6% at low, middle, and high spiking levels were also obtained. In conclusion, the d-SPE-LC-MS/MS method based on CNT@SiO2 composite sorbents is accurate and sensitive. The results of this study demonstrate that CNT@SiO2 is a good choice for the rapid and effective determination of PFCs from water samples. Further exploration of the use of CNT@SiO2 sorbents for the extraction and determination of trace organic pollutions in environmental samples is in progress.

    Determination of 26 bisphenols in dust by ultra performance liquid chromatography-tandem mass spectrometry
    SUN Jialin, NIU Yumin, GAO Qun, ZHANG Jing, SHAO Bing
    2023, 41 (5):  417-425.  DOI: 10.3724/SP.J.1123.2022.08022
    Abstract ( 283 )   HTML ( 35 )   PDF (1339KB) ( 238 )  

    Bisphenol A (BPA) is one of the most widely produced compounds in the world and was listed as a substance of very high concern by the European Chemicals Agency in 2016. Because of its toxicity, many countries and regions, including China, have banned BPA addition in feeding-bottles. And the European Union (EU) has banned BPA use in other food contact materials and thermal paper. Restrictions on BPA have contributed to the widespread use of alternatives. As the toxicity of BPA alternatives continues to be revealed, the alternatives of BPA alternatives are being developing. As the most extensive alternative for BPA, bisphenol S (BPS) was proven to have estrogen-disrupting effects and developmental toxicity of the neuroendocrine system. Therefore, BPS alternatives are used in thermal paper. In this study, alternatives to both BPA and BPS are collectively referred to as bisphenols (BPs). As a pooling matrix of many indoor chemicals, dust is an important pathway for human exposure to BPs. BPA and its alternatives are routinely detected in dust. As BPS alternatives have been detected in recycled paper and sludge, it is also very important to detected in dust. However, common analytical methods for BPs have low sensitivity and contain few BPS alternatives. Therefore, a high-throughput, high-accuracy, and high-sensitivity method must be established for the determination of BPs in dust; this will lay the foundation for subsequent studies on the environmental behavior and exposure risk of BPs.

    In this study, an ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the simultaneous determination of 26 variations of BPs in dust. UPLC-MS/MS parameters of the variations were optimized to compare the separation effect and response intensity in different columns and mobile phases. The influence of the extraction solvent and solid phase extraction (SPE) on the extraction efficiency and purification effect of target compounds were optimized by using the isotopic internal standard method, and the 26 variations of BPs in dust was quantitatively analyzed. Finally, the dust samples were extracted by using 3 mL of acetonitrile and 3 mL of a 50% methanol aqueous solution in an ultrasound bath. The combined extract was further purified by using an Oasis HLB cartridge (60 mg/3 mL). The cartridge was then washed with a 40% methanol aqueous solution (0.5 mL) and eluted with methanol (2 mL). The target compounds were separated on a CORTECS® UPLC® C18 column (100 mm×2.1 mm, 1.6 μm), with methanol and 1 mmol/L ammonium fluoride solution as mobile phases and a flow rate of 0.3 mL/min. Electrospray ionization (ESI) was applied in the positive, negative, and multiple reaction monitoring (MRM) modes for the mass scan. Under optimized conditions, the linear ranges of the 26 targets behaved well linearly in their respective ranges with correlation coefficients (r2)>0.999. The limits of detection (LODs) and limits of quantification (LOQs) were assessed using signal-to-noise (S/N) ratios of 3 and 10, respectively. The LODs and LOQs of the method were 0.01-0.75 μg/kg and 0.02-2.50 μg/kg, respectively. The accuracy of the method was evaluated by conducting a recovery test at three spiked levels: LOQ, two times the LOQ, and 10 times the LOQ, with the average recoveries ranging from 83.7% to 114.9%. The precision of the method was evaluated by using the relative standard deviation (RSD). The intra-day RSDs and inter-day RSDs were 0.86%-9.79% (n=6) and 5.16%-19.5% (n=6), respectively. The established method was used to determine 11 dust samples. Fifteen BPs were detected at a detection rate of 9.1%-100.0%. The detection rate for BPA, BPS, bisphenol F (BPF), 4-hydroxy-4'-isopropoxydiphenylsulfone (BPSIP), and diphenyl sulfone (DPS) was 100.0%. BPSIP, 4-allyloxy-4'-hydroxydiphenyl sulfone (BPS-MAE), and bis-(3-allyl-4-hydroxyphenyl) sulfone (TGSA) were first detected in Chinese dust, whereas 4-benzyloxy-4'-hydroxydiphenyl sulfone (BPS-MPE), 4-hydroxybenzoic acid benzyl (PHBB), and DPS were first detected in dust samples worldwide. This method is simple, rapid, and sensitive, and is suitable for the qualitative screening and quantitative analysis of the 26 BPs in dust samples.

    Determination of eight cannabinoids in foods with enhanced matrix removal-lipid adsorbent by ultra performance liquid chromatography-tandem mass spectrometry
    SHAO Man, YU Xiaoqin, HUANG Lijuan, YAO Huan, LI Shucai
    2023, 41 (5):  426-433.  DOI: 10.3724/SP.J.1123.2022.08010
    Abstract ( 547 )   HTML ( 29 )   PDF (1356KB) ( 173 )  

    A novel method was developed for the simultaneous determination of eight cannabinoids in six types of food matrices, including chocolate, fondant, biscuit, beverage, cookie and baijiu, using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The sample extraction and cleanup steps were optimized, and various purification methods were investigated to remove the oil matrix and glue in chocolate and fudge, respectively. Enhanced matrix removal-lipid adsorbent (EMR-Lipid) provided efficient, selective cleanup of the evaluated matrices. The sample was extracted using acetonitrile, followed by EMR-Lipid cleanup, and then dried using anhydrous sodium sulfate. The acetonitrile layer was concentrated by nitrogen to near-dry after 100 μL 10% glycerol in methanol was added to improve the recovery by reducing loss during concentration under the stream of nitrogen gas. Eight cannabinoids were separated using a Waters ACQUITY UPLC BEH Shield RP18 column (100 mm×3.0 mm, 1.7 μm). The responses of the cannabinoids in the positive and negative ionization modes were investigated and optimized, and the responses were superior in the negative ion mode compared to those in the positive ion mode. MS detection was performed in the multi-reaction monitoring (MRM) mode using an electrospray source in the negative ion mode. The cannabinoids were quantified using an external standard with matrix calibration curves to reduce the influences of the matrix effects on the quantitative results. The developed method was verified, and the conditions of sample pretreatment were also optimized. The calibration curves of tetrahydrocannabinol, cannabidivarin, tetrahydrocannabivarin, and cannabigerol and those of cannabidiol, cannabinol, cannabidiolic acid, and tetrahydrocannabinolic acid exhibited good linearities, with r>0.995, in the ranges of 2-200 and 0.4-40 ng/mL, respectively. The respective limits of detection (LODs, S/N=3) and quantification (LOQs, S/N=10) of tetrahydrocannabinol, cannabidivarin, tetrahydrocannabivarin, and cannabigerol were 4 and 10 μg/kg, and those of cannabidiol, cannabinol, cannabidiolic acid, and tetrahydrocannabinolic acid were 0.8 and 2 μg/kg. The average recoveries of the cannabinoids were 82.0%-114.9% under three spiked levels with corresponding relative standard deviations (RSDs) of <15% (n=6). EMR-Lipid provided efficient, selective cleanups of food matrices with good accuracy. The method is sensitive, rapid, accurate, simple to execute, and it is suitable for the determination of cannabinol compounds in typical food matrices.

    Determination of 18 caine anesthetics in animal meat using solid phase extraction combined with ultra-performance liquid chromatography-tandem mass spectrometry
    WU Shaoming, OUYANG Liqun, MENG Peng, HE Menghang, LIN Qin, CHEN Yankai, LIU Wenjing, SU Xiaoming, DAI Ming
    2023, 41 (5):  434-442.  DOI: 10.3724/SP.J.1123.2022.08019
    Abstract ( 148 )   HTML ( 28 )   PDF (1442KB) ( 128 )  

    Because of the widespread application of anesthetic drugs in the fields of animal breeding and transportation, demand for the rapid, sensitive detection of anesthetic drugs in animal meat is increasing. The complex animal meat matrix contains various interfering substances, such as proteins, fats, and phospholipids, along with anesthetic drug residues at very low concentrations. Therefore, adopting appropriate pretreatment methods is necessary to improve the sensitivity of detection. In this study, a rapid, accurate analytical method based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and solid phase extraction (SPE) was established to determine the contents of 18 caines in animal meat. The MS parameters, such as the collision energies of 18 caines, were optimized. Furthermore, the chromatographic separation conditions and response intensities of the caine in different mobile phases were compared. The effects of different pretreatment conditions on the extraction efficiencies of the 18 caines in meat samples and those of different purification conditions, such as extraction solvent, SPE column, and dimethylsulfoxide (DMSO) dosage, on their recoveries were investigated. Combined with the external standard method, the 18 caines in meat were successfully quantified. Sample pretreatment is a three-step process. First, in ultrasound-assisted extraction, 2.0 g samples were added to 2.0 mL water and extracted using 10 mL 0.1% (v/v) formic acid in acetonitrile under ultrasound conditions for 10 min. SPE was then performed using an Oasis PRIME HLB column. Finally, DMSO-assisted concentration was employed: the organic layer was collected and dried at 40 ℃ under a stream of N2 gas with the addition of 100 μL DMSO. Acetonitrile-water (1∶9, v/v) was added to the residue to yield a final volume of 1.0 mL for use in UPLC-MS/MS. The 18 caines were separated using an HSS T3 (100 mm×2.1 mm, 1.8 μm) column with 0.1% (v/v) formic acid in water (containing 0.02 mmol/L ammonium acetate) and methanol as mobile phases. Samples were detected using an electrospray ion source (ESI) in the positive ion and multiple reaction monitoring (MRM) modes during UPLC-MS/MS. Under the optimized conditions, the 18 target caine anesthetics displayed good linearities in the range of 1.00-50.0 μg/L, and the correlation coefficients (R2) were >0.999. The respective limits of detection (LODs) and quantification (LOQs) were 0.2-0.5 μg/kg, and 0.6-1.5 μg/kg. In pork, beef, and mutton samples, the recoveries obtained at three spiked levels were 83.4%-100.4% with relative standard deviations (RSDs) of 3.1%-8.5%. This simple, rapid, sensitive method may be applied in the detection of 18 caine anesthetics in animal meat and may provide technical support to the food safety department in China in monitoring the residues of caine anesthetics in animal meat.

    Technical Notes
    Determination of 39 fatty acids in liver of rats by gas chromatography-mass spectrometry
    WU Yingxia, MU Yan, LIU Peishan, ZHANG Yitian, ZENG Yingxuan, ZHOU Zhifeng
    2023, 41 (5):  443-449.  DOI: 10.3724/SP.J.1123.2022.09014
    Abstract ( 277 )   HTML ( 42 )   PDF (979KB) ( 148 )  

    Fatty acids not only form phospholipids that contribute to the formation of cell membranes but also participate in many metabolic activities, such as energy storage and cell signal transduction. The liver plays a key role in the synthesis and metabolism of fatty acids. The composition and contents of fatty acids in the liver are closely related to body health. Most fatty acid-detection methods require a large sample size and can detect only a small number of fatty acids. Therefore, a sensitive and efficient method to determine fatty acids in the liver is urgently required. Herein, a method based on gas chromatography-mass spectrometry (GC-MS) was established for the simultaneous determination of 39 fatty acids in 1.1 mg of liver tissue. Different extraction methods and derivatization conditions were compared to develop an optimal sample-treatment method. The performance of two different columns in separating the target fatty acids were also compared. A total of 10 mg of liver was added to 450 μL of normal saline and ground at -35 ℃ to obtain a homogenate. Next, 50 μL of the homogenate (equivalent to 1.1 mg of liver) was added with 750 μL of chloroform-methanol (1∶2, v/v) to extract total fatty acids. The fatty acid extracts were dried under nitrogen, and then derivatized at 100 ℃ for 90 min after being added with methanol containing 5% sulfuric acid. The fatty acid methyl esters were extracted with hexane and then separated on an SP-2560 capillary column (100 m×0.25 mm×0.2 μm; Supelco, USA) via GC-MS. The results revealed that all 39 fatty acid methyl esters detected had good linearities in the certain mass concentration ranges with correlation coefficients (R2) greater than 0.9940. The limits of detection (LOD) and quantification (LOQ) of these methyl esters in the liver were 2-272 ng/mg and 7-906 ng/mg, respectively. The accuracy and precision of the method were evaluated by spiking the liver homogenate with tridecylic acid and eicosanoic acid at low (0.09 μg/mg), moderate (0.90 μg/mg), and high (5.40 μg/mg) concentration levels. The recoveries ranged from 82.4% to 101.0% with an intraday relative standard deviations (RSDs) (n=5) of 3.2%-12.0% and interday RSDs (n=3) of 5.4%-13.4%. The method was successfully applied to detect fatty acids in the livers of four healthy male Sprague-Dawley (SD) rats and four male SD rats with abnormal liver function induced by perfluorooctane sulfonate (PFOS). PFOS is a persistent organic pollutant. Twenty-six fatty acids were detected in the livers of both groups. Among the fatty acids investigated, pentadecanoic acid (C15∶0), γ-linolenic acid (C18∶3n6), and elaidic acid (C18∶1n9t) cannot be detected by the methods reported in the literature. By contrast, the method developed in this study could separate the isomers of oleic acid (elaidic acid, C18∶1n9t; oleic acid, C18∶1n9c) and linolenic acid (linolelaidic acid, C18∶2n6t; linoleic acid, C18∶2n6c). In conclusion, the developed method is simple and can detect a large number of fatty acids using small sample amounts and few reagents. More importantly, it could successfully separate fatty acid isomers. These findings indicate that the developed method is suitable for the detection of fatty acid composition and contents in the liver in clinical and experimental research.

    Influence of ethanol content on the detection of volatile components in Huangjiu
    HU Jian, HUANG Yuanyuan, LIU Shuangping, MAO Jian
    2023, 41 (5):  450-455.  DOI: 10.3724/SP.J.1123.2022.07018
    Abstract ( 156 )   HTML ( 26 )   PDF (894KB) ( 72 )  

    Huangjiu (Chinese rice wine) is a traditional Chinese fermented wine with a unique flavor. The components of this wine are complex, and the ethanol content of different Huangjiu preparations varies greatly. In this study, changes in the chromatographic peak areas of the volatile components of Huangjiu samples with different ethanol contents were measured using headspace-gas chromatography (HS-GC). The influence of ethanol on the quantitative detection of different volatile components of Huangjiu at gas-liquid equilibrium was also analyzed. When the ethanol content of Huangjiu was in the range of 10%-19% vol, the peak areas of 16 volatile components (i. e., sec-butanol, n-propanol, isobutanol, n-butanol, isoamyl alcohol, β-phenyl-ethanol, acetaldehyde, isovaleraldehyde, benzaldehyde, ethyl formate, ethyl acetate, isobutyl acetate, isoamyl acetate, ethyl hexanoate, ethyl lactate, and diethyl succinate) were negatively correlated with the ethanol content. Increases in the ethanol content of the liquor changed the gas-liquid equilibrium of most other trace volatile components. In addition, only the peak area of acetal was positively correlated with ethanol content. The content of acetal in Huangjiu was affected by the alcohol content, and its decomposition reaction occurred along with the dilution process. The influence coefficient of ethanol content on the peak area of the above compounds ranged from -12.4% to 4.9%. The vapor pressure of most volatile components decreased with increasing ethanol content, and different components were affected in different ways. Compared with those of other components, the peak areas of methanol, furfural, and acetic acid were less affected by the ethanol content. These components were also affected by other factors, such as ionization and chemical reactions occurring during the dilution process. When different wine samples were adjusted to the same ethanol content, the concentration of volatile components in these samples became proportional to the total chromatographic peak area and the influence of the matrix effect of ethanol on the quantitative analysis was effectively eliminated. Thus, when researchers use pretreatment methods based on the principle of gas-liquid balance to carry out the quantitative detection of flavor components, they should adjust different rice wine samples to the same alcohol content to effectively control the matrix effect caused by differences in ethanol content and achieve accurate quantitative analysis.