Loading...

List of Issues

    Chinese Journal of Chromatography
    2024, Vol. 42, No. 11
    Online: 08 November 2024

    For Selected: Toggle Thumbnails
    CONTENTS
    2024, 42 (11):  0-0. 
    Abstract ( 48 )   PDF (3581KB) ( 71 )  
    Articles
    Using metabolomics to explore the effects of epigenetic-modification strategies on the metabolites of Acanthus ilicifolius L. endophytic fungi against ovarian cancer
    MA Xiaolin, CAI Laiyan, LIU Yanying, XING Shangping, KANG Liang, WEI Xia, ZHU Dan
    2024, 42 (11):  1015-1023.  DOI: 10.3724/SP.J.1123.2024.08002
    Abstract ( 102 )   HTML ( 28 )   PDF (2192KB) ( 62 )  

    Ovarian cancer is a serious threat to women’s health and safety. So far, people have discovered more than 130 small molecule compounds of natural origin for anti-tumor, of which approximately 50% are of microbial origin. The Acanthus ilicifolius L. species is primarily distributed in the Guangdong, Hainan, and Guangxi regions of China and grows in tidally accessible coastal areas. Recent studies have revealed that Acanthus ilicifolius L. extracts are endowed with a range of pharmacological properties, including anti-inflammatory, hepatoprotective, antioxidant, and antitumor activities. Endophytic fungi are commonly found in the healthy tissue and organs of medicinal plants. These fungi and the plants they inhabit form mutually beneficial symbiotic relationships. Endophytic fungi produce a series of secondary metabolites, with active substances having shown great economic value and applications prospects in drug research and development as well as for the biological control of plant diseases. Secondary metabolites production by endophytic fungi is regulated by specific gene clusters, and several techniques have been used to stimulate the secondary metabolic processes of fungi, including epigenetic-modification and OSMAC (one strain many compounds) strategies, co-culturing, and gene modification. Among these, epigenetic modification has been shown to be effective; this strategy involves the addition of small-molecule epigenetic modifiers to the culture medium, thereby activating silenced biosynthetic gene clusters without altering the DNA sequences of the fungi. This approach facilitates the expression of silenced genes in endophytic fungi, thereby increasing the number and diversity of secondary metabolites. Furthermore, it assists in overcoming the inhibition of microbial secondary-metabolite synthesis under laboratory conditions, and enhances silenced-gene expressions.

    The advent of novel analytical techniques and bioinformatics has provided a comprehensive, multifaceted, and holistic understanding of fungal metabolism through the development of metabolomics as a research platform. However, few studies have combined anti-ovarian cancer-activity screening with metabolomic approaches in the search for activity-differentiating metabolites from endophytic fungi under the intervention of epigenetic modifiers.

    Herein, we investigated the impact of epigenetic modifiers on the secondary metabolites of the endophytic Diaporthe goulteri fungus from Acanthus ilicifolius L. to determine their potential anti-ovarian cancer activities. Crude extracts were obtained by controlling three variables: the number of fermentation days, the type of epigenetic modifier, and its concentration, with activities screened using the CCK-8 (cell counting kit-8) method. Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was subsequently employed for non-targeted metabolomic analysis. A multivariate statistical analysis model was constructed using principal component analysis and orthogonal partial least squares-discriminant analysis, which combines model and variable importance projection, with qualitative screening performed and significant changes (variable importance in the projection (VIP)≥1; P<0. 05) determined. Fifteen differential metabolites were identified in the fungal and epigenetic modification group, primarily comprising polyketides, amino acids, derivatives, alkaloids, and organic acids, including prenderol, glycine, valine, 2-ethylcaproic acid, rubratoxin B, finasteride, 6-silaspiro[5.5]undecane, 1-(2-nitrophenoxy)octane, heptadecene, 1-pentadecene, 11-ketoetiocholanolone, 3-(1-ethyl-1,3,3-trimethyl-2,3-dihydro-1H-inden-5-yl)butanal, N2-benzoylarginine, tabutrex, (3aR,6S,6aS)-6-(4-hydroxy-2-methoxy-2-butanyl)-4,4-dimethylhexahydro-1(2H)-pentalenone, and 8-aminoquinoline. The expressions of prenderol, 1-(2-nitrophenoxy)octane, 3-(1-ethyl-1,3,3-trimethyl-2,3-dihydro-1H-inden-5-yl)butanal, N2-benzoylarginine, and 8-aminoquinoline were downregulated, whereas the expressions of the remaining 10 substances were upregulated. Polyketides were the main components that exhibited higher expressions. This study showed that latent active differential metabolites can be searched by combining anti-ovarian cancer-activity screening with metabolomics analysis, thereby providing a reference for the further development of Acanthus ilicifolius L. resources and the subsequent targeted isolation of active compounds.

    Analysis of the relationship between neonatal birth weight and meconium metabolites based on birth cohort metabolomics
    CHEN Yujie, LU Zhonghua, LIANG Shijia, ZHANG Jie
    2024, 42 (11):  1024-1031.  DOI: 10.3724/SP.J.1123.2023.12012
    Abstract ( 63 )   HTML ( 24 )   PDF (2788KB) ( 36 )  

    Neonatal birth weight is a crucial indicator of intrauterine growth and development with important implications for child development and adult health. The birth weight of a newborn is closely linked to the nutrition and health of the mother during pregnancy as well as genetic factors. Therefore, assessing the metabolic status of the fetus in utero is greatly significant for understanding the mechanisms responsible for abnormal birth weight. While previous studies often analyzed the impact of maternal metabolism on fetal development using umbilical cord blood from pregnant women, such blood may not accurately reflect the actual intrauterine environment owing to the barrier function of the placenta; moreover, obtaining biological samples during the fetal period is challenging. Meconium, the first feces excreted by a newborn, provides ideal biological material for studying maternal and infant health. Metabolomics can reveal metabolic changes in living organisms by analyzing small molecules in biological samples; hence studying meconium samples using metabolomics technology is expected to reveal fetal metabolic changes during pregnancy, thereby providing new insights into fetal nutritional intake, growth, and development, as well as metabolic pathways related to birth weight. To gain a deeper understanding of the metabolic changes associated with birth weight, this study collected metabolomic data from the meconium of 484 newborns in the established Xiaogan birth cohort using an untargeted metabolomics technique based on liquid chromatography-high resolution mass spectrometry (LC-HRMS) and analyzed the association between meconium metabolites and birth weight. This cohort exhibited incidence rates of low birth weight (<2500 g) and macrosomia (>4000 g) of 3.3% and 7.2%, respectively, which were roughly equivalent to the national average. Orthogonal partial least squares discriminant analysis revealed significant differences between the meconium metabolomes of the low birth weight and macrosomic groups when compared to the normal weight group. We discovered significant distinctions between the differential metabolites of newborns of low birth weight and those of normal weight, as well as between macrosomic and normal weight newborns that point to disparate biological pathways. Newborns with low birth weight exhibited significantly lower levels of critical amino acids, such as glutamate and proline, compared to the normal weight group, which may be associated with placental dysfunction and maternal nutritional deficiencies. Conversely, the meconium of macrosomic newborns contained significantly elevated levels of hormone metabolites such as estrone that reflected the pathophysiological state associated with maternal metabolic diseases or excessive placental hormone levels. Our study suggests that the metabolomic profile of the meconium reflects the metabolic pathways and regulatory mechanisms at play during fetal growth and development, and offers potential metabolic biomarkers and directions for future in-depth research into diseases related to fetal development. However, this study was based solely on the Xiaogan birth cohort, which was limited to specific regions and populations. A multicenter, multiethnic, and multiregional study is expected to help validate the universality of our research findings.

    Simultaneous determination of 17 perfluoroalkyl substances in beef by EMR-Lipid dispersive solid-phase extraction and ultra performance liquid chromatography-tandem mass spectrometry
    QIU Qiaoli, PAN Shengdong, WANG Li, FANG Lanyun, CHEN Xiaohong, JIN Micong
    2024, 42 (11):  1032-1041.  DOI: 10.3724/SP.J.1123.2024.02010
    Abstract ( 130 )   HTML ( 25 )   PDF (2047KB) ( 93 )  

    The ability to accurately analyze perfluoroalkyl substance (PFAS) levels in beef is imperative in order to effectively assess food-safety risks and ensure consumer safety because PFASs are harmful and prevalent in beef. In this study, we developed a rapid and accurate method for the simultaneously determination of the 17 PFASs in beef using dispersive solid-phase extraction (d-SPE) and ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and optimized the mobile phase system, extraction solvent, and d-SPE materials. Samples were finally extracted using 0.1% (v/v) formic acid in acetonitrile, cleaned using d-SPE with PSA, C18, GCB, and EMR-Lipid, separated using an Acquity Premier BEH C18 column (100 mm×2.1 mm, 1.7 μm) with 0.5 mmol/L ammonium fluoride aqueous solution and methanol as the mobile phases at a flow rate of 0.3 mL/min. Analytes were detected in negative ion switching mode (ESI-) with multiple reaction monitoring (MRM) scanning, and quantitatively analyzed using the internal standard method. The 17 PFASs exhibited linearity in the 0.2-20.0 μg/L range under the optimal experimental conditions, with correlation coefficients of 0.9915-0.9999. The method delivered limits of detection (LODs) of 0.003-0.007 μg/kg and limits of quantification (LOQs) of 0.01-0.02 μg/kg. The 17 PFASs exhibited recoveries of 71.1%-127.4% with RSDs of 0.6%-14.4% when spiked at three levels (0.05, 0.5, and 1.8 μg/kg). We optimized the mobile phase system, which revealed that, compared with 2.0, 5.0, and 10.0 mmol/L ammonium formate or ammonium acetate in aqueous methanol, 0.5 mmol/L ammonium fluoride in aqueous methanol exhibited higher sensitivities for all the 17 PFASs, with PFASs bearing long-chain carboxylic acids (C10-C18) showing 1-2 fold increases in sensitivity. PFASs do not dissociate in acidic environments, favoring their entry into the organic phase. Therefore, we investigated the effect of extractant acidity, which revealed that the 17 PFASs were better extracted using 0.1% (v/v) formic acid in acetonitrile. The beef matrix has a complex composition; consequently, d-SPE adsorbents were required to purify samples and reduce matrix effects. The purification effects of four adsorbents (PSA, C18, GCB, and EMR-Lipid) toward the 17 PFASs and the amount of EMR-Lipid used were investigated, which revealed that 100 mg PSA+80 mg C18+40 mg GCB+150 mg EMR-Lipid exhibited superior matrix-purification behavior. We also investigated the effects of various injection solutions and types of syringe filter, with pure methanol selected for reconstitution and high-speed supernatant centrifugation applied prior to injection. The developed method is simple, rapid, sensitive, and reproducible, and can be used to simultaneously, rapidly, and accurately determine various perfluoroalkyl compounds in beef.

    Determination of seven phenoxy carboxylic acid herbicides in water using dispersive solid phase extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry based on metal-organic framework composite aerogel
    ZHANG Xin, WU Gege, CUI Wenlian, LI Shuang, MA Jiping
    2024, 42 (11):  1042-1051.  DOI: 10.3724/SP.J.1123.2024.01005
    Abstract ( 98 )   HTML ( 20 )   PDF (2477KB) ( 69 )  

    Phenoxy carboxylic acid herbicides (PCAs) are difficult to degrade and, thus, pose significant threats to the environment and human health. The limit for 2,4-dichlorophenoxyacetic acid is 30 μg/L in China’s standards for drinking water quality, 70 μg/L in the United States’ drinking water standards, and 30 μg/L in the World Health Organization’s guidelines for drinking water quality. Therefore, the development of an effective detection method for trace PCAs in water is a crucial endeavor. Metal-organic frameworks (MOFs) are novel porous materials that possess advantages such as a large specific surface area, adjustable pore size, and abundant active sites. They exhibit excellent adsorption capability for various compounds. However, the applications of MOFs as adsorbents are limited. For example, the process of isolating powdered MOFs from aqueous solutions is laborious, and microporous MOFs exhibit limited surface affinity, which decreases their mass transfer efficiency in the liquid phase. MOF crystals can be embedded in a substrate to overcome these limitations. Aerogels are obtained by drying hydrogels, which are hydrophilic polymers with a three-dimensional crosslinked network structure. Spongy aerogel materials exhibit unique structural properties such as high porosity, large pore volume, ultralow density, and easy tailorability. When MOFs are combined with an aerogel, their efficient and selective adsorption properties are preserved. In addition, MOF aerogels exhibit a hierarchical porous structure, which enhances the affinity and mass transfer efficiency of the MOF for target molecules. At present, MOF aerogels are primarily prepared by freeze-drying or using supercritical carbon dioxide. These drying processes require significant amounts of energy and time. Hence, the development of greener and more efficient methods to prepare skeleton aerogels is urgently needed. In this study, we prepared an environment-friendly aerogel at ambient temperature and pressure without the use of specialized drying equipment. This ambient-dried MOF composite aerogel was then used for the dispersive solid phase extraction (DSPE) of seven PCAs from environmental water, followed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The key parameters affecting the efficiency of DSPE, including the extraction conditions, ratio of MIL-101(Fe)-NH2 to sodium alginate, pH of the aqueous samples, extraction time, ionic strength (salinity), and elution conditions, such as the elution solvent ratio, elution time, and elution volume, were investigated to obtain optimal extraction efficiency. The adsorbent could adsorb the target contaminants within 12 min, and the analytes could be completely desorbed within 30 s by elution with 4 mL of 1.5% (v/v) formic acid in methanol solution. The water samples could be analyzed without pH adjustment. The main adsorption mechanisms were electrostatic interactions and π-π conjugation. Thus, a new method based on MOF aerogels coupled with UHPLC-MS/MS was developed for the determination of the seven PCA residues in water. The calibration curves for the seven PCAs showed good linearity (r2≥0.9986), with limits of detection (LODs) and quantification (LOQs) ranging from 0.30 to 1.52 ng/L and from 1.00 to 5.00 ng/L, respectively. Good intra- and inter-day precision values of 6.5%-17.1% and 7.4%-19.4%, respectively, were achieved under low (8 ng/L), medium (80 ng/L), and high (800 ng/L) spiking levels. The developed method was applied to the detection of PCAs in surface water, seawater, and waste leachate, and the detected mass concentrations ranged from 0.6 to 19.3 ng/L. Spiked recovery experiments were conducted at mass concentrations of 8, 80, and 800 ng/L, and the recoveries ranged from 61.7% to 120.3%. The proposed method demonstrates good sensitivity, precision, and accuracy, and has potential applications in the detection of trace PCAs in environmental water.

    Determination of three methylimidazole compounds in cosmetics by high performance liquid chromatography-tandem mass spectrometry
    CAI Cuiling, LI Ju, XI Jing, HOU Yingye, ZENG Guangfeng, XIE Jianjun, WU Shuyue, WANG Lu
    2024, 42 (11):  1052-1058.  DOI: 10.3724/SP.J.1123.2023.11011
    Abstract ( 125 )   HTML ( 29 )   PDF (953KB) ( 84 )  

    Methylimidazole compounds are byproducts formed during the caramel-coloring process and are used in various cosmetics. In addition metronidazole is an antibacterial and anti-inflammatory drug commonly used in modern medicine and is used in cosmetics to treat acne in the short-term. The illegal addition of metronidazole during cosmetics production can result in residual 2-methylimidazole (2-MEI), which, along with 4-methylimidazole (4-MEI), is a class 2B carcinogen. Therefore, establishing efficient, accurate, and sensitive analytical techniques for analyzing methylimidazole compounds in cosmetics is an urgent objective. In this study, a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for simultaneously determining 1-methylimidazole (1-MEI), 2-MEI, and 4-MEI in cosmetics was developed. Cosmetics samples were extracted via ultrasonication in acetonitrile and purified using a mixed cation-exchange (MCX) solid-phase extraction (SPE) column, with subsequent drying under a stream of nitrogen and redissolution in acetonitrile. The resulting solution was then filtered through a 0.22 μm organic filter membrane for further testing. The analytes were separated using an XBridge® shield RP18 chromatographic column (150 mm×4.6 mm, 3.5 μm) and isocratically eluted with 20 mmol/L ammonium formate solution (containing 0.1% formic acid)-acetonitrile (98∶2, v/v). The target compounds were ionized by electrospray ionization (ESI) source, analyzed in multi-reaction monitoring (MRM) mode, and quantified using the external standard method, with the peak area of the quantitative ion and the mass concentration of the compound taken as the longitudinal and transverse coordinates, respectively. Matrix-matching working curves were also constructed. 1-MEI exhibited good linear relationships in the range of 5-200 μg/L, with correlation coefficients (r2)≥0.9994, while 2-MEI and 4-MEI showed good linearities in the range of 2-100 μg/L with r2≥0.9984. The three methylimidazole compounds exhibited limits of detection (LODs) and quantification (LOQs) of 10-30 μg/kg and 25-100 μg/kg, respectively. Under three spiked levels (LOQ, 2LOQ, 10LOQ), the recoveries of three methylimidazole compounds were 80.9%-107.9%, with relative standard deviations (RSDs, n=6) of 1.2%-12.8%. The practicability of the method was examined using 48 cosmetic samples; 4-MEI was detected in nine samples at contents of 26-1000 μg/kg, while two samples contained 240 and 267 μg/kg of 2-MEI, respectively. 1-MEI was not detected in any of the 48 samples tested. The developed method is simple, fast, and highly sensitive, and provides methodological support for assessing risks and monitoring the three methylimidazole compounds in cosmetics through screening.

    Simultaneous determination of ethylene oxide, 2-chloroethanol and ethylene glycol residues in medical device products by gas chromatography
    LIU Ruojin, LIU Baoyu, LI Hui, SHAO Wenliang, FENG Yi
    2024, 42 (11):  1059-1067.  DOI: 10.3724/SP.J.1123.2024.01010
    Abstract ( 124 )   HTML ( 14 )   PDF (863KB) ( 77 )  

    A gas chromatography-based method was developed for the simultaneous and rapid determination of ethylene oxide (EO), 2-chloroethanol (ECH), and ethylene glycol (EG) residues in medical devices after EO sterilization. A sample weighing 2.5 g was added with 5 mL of ethanol as the extraction medium, and the residual substances in the sample were extracted at 40 ℃ for 4 h. The samples were separated on a DB-WAX capillary column (30 m×0.53 mm×1.0 μm) and determined using a hydrogen flame ionization detector. The temperature was maintained at 40 ℃ for 5 min, increased to 120 ℃ at a rate of 40 ℃/min, held for 5 min, and then increased to 200 ℃ at a rate of 6 ℃/min, held for 2 min. The flow rate of the nitrogen gas was 3 mL/min. The split ratio was 5∶1. The inlet and detector temperatures were 200 and 300 ℃, respectively. The changes in the chromatographic peak areas over time (0.5-10 h) under different temperatures (20, 30, 40, and 50 ℃) were investigated, and the optimal extraction condition was determined to be 40 ℃ for 4 h. In the experiments, quantification was performed using an external standard method. EO, ECH, and EG exhibited good peak shapes and separation effects as well as good linearity within their respective ranges. The linear correlation coefficients for EO, ECH, and EG were greater than 0.99. The limits of detection (LODs) for EO, ECH, and EG were in the range of 0.10-0.40 μg/g, and the limits of quantification (LOQs) were in the range of 0.30-1.20 μg/g. The average recoveries under different spiked levels were in the range of 91.08%-116.08%, and the relative standard deviations (n=6) were in the range of 0.56%-8.45%. EO, ECH, and EG residues were found to exist at different levels in the medical devices tested. In particular, disposable infusion sets must be paid careful attention. ECH and EG were not detected in disposable sterile medical devices made of non-polyvinyl chloride materials, which may be due to the fact that the products themselves did not contain chloride ions, they were not exposed to chlorine-containing substances during their production, sterilization, storage, transportation, use, etc. This study established a method to detect EO residues in disposable medical devices, and has the advantages of simple operation, excellent specificity, accurate quantification, and good reproducibility. It can simultaneously detect three residual substances in medical devices while meeting the actual detection requirements for EO, ECH, and EG residues. The method can be used to scientifically and effectively evaluate the risk of EO residues in single-use medical devices sterilized with EO, and will be helpful for improving the quality of medical devices, ensuring the safety of device use, and providing a reference for regulatory supervision and testing.

    Preparation of fluorescent carbon dots by flow-assisted melt polymerization for tetracycline detection in medical wastewater
    LIU Ziwei, NI Lanxiu, CHI Jie, QIN Yingxi, SHI Zhenjia, WANG Yu, WEI Huangzhao, FENG Liang, SUN Chenglin
    2024, 42 (11):  1068-1076.  DOI: 10.3724/SP.J.1123.2024.03001
    Abstract ( 70 )   HTML ( 9 )   PDF (4401KB) ( 32 )  

    Tetracycline (TC) is one of the most important therapeutic drugs that is widely used in hospitals. However, its harmful effects on human health and various ecosystems cannot be ignored. Owing to its poor metabolic activity and low biodegradability, TC commonly discharges as the parent compound and accumulates readily in sludges and soils by precipitation from wastewater, which can induce the evolution of antibiotic-resistant bacteria; therefore, it has been listed as one of the new pollutants with potential ecotoxicological risk. The control measures and environmental management of TC pollutants in environmental water samples require precise determination of TC pollutant concentrations. Carbon dots (CDs) are an emerging type of fluorescent material with numerous advantages such as easy preparation, low cost, low toxicity, and good biocompatibility. Consequently, they have attracted widespread attention in the field of TC detection. Herein, we synthesized TE-CDs with good blue-fluorescence performance via flow-assisted melt polymerization using tricarboxylic acid and ethylenediamine as raw precursors. The morphology and structure of the prepared TE-CDs were characterized. The transmission electron microscopy (TEM) results showed that the prepared TE-CDs were well dispersed, with an average diameter of (2.43±0.48) nm. The X-ray diffraction (XRD) results showed that the TE-CDs had an amorphous carbon structure. Infrared spectroscopy and X-ray photoelectron spectroscopy (XPS) characterizations showed that the surface of the TE-CDs was rich in hydrophilic groups, such as amino, hydroxyl, and carboxyl groups, which indicated that TE-CDs had good water solubility and were advantageous for detecting TC in medical wastewater. Subsequently, the optical properties of the TE-CDs were investigated. The fluorescence emission spectra of the TE-CDs were recorded at various excitation wavelengths. The emission spectra of the TE-CDs exhibited excitation wavelength dependence and when the excitation wavelength changes from 300 nm to 400 nm, their fluorescence intensity decreased to varying degrees. The TE-CDs exhibited optimal fluorescence intensity at an excitation wavelength of 368 nm, while the emission wavelength was 448 nm.

    TC could effectively quench the blue fluorescence of the CDs, and by utilizing this property, the detection of TC concentration could be achieved. After the addition of TC, the fluorescence of the system immediately reached an extreme value, and no significant change was observed within 10 min. An incubation time of 20 s was selected to obtain precise results. Additionally, the TE-CDs exhibited stable fluorescence intensity over a wide pH range. The fluorescence stability of the TE-CDs was investigated, and no significant change in fluorescence intensity was observed after standing for 10 d, indicating that the prepared TE-CDs had excellent fluorescence stability. The fluorescence intensity of the TE-CDs decreased to varying degrees within the range of 2-200 mg/L TC until complete quenching occurred. TC mass concentration in the range of 4-20 mg/L showed a good linear relationship (R2=0.9978) with the fluorescence quenching intensity of the TE-CDs. The limit of detection was 0.2 mg/L. A preliminary investigation was undertaken to explore the quenching mechanism of the TE-CDs fluorescence by TC. Upon addition of TC, a significant reduction in the fluorescence lifetime of the TE-CDs was observed. During the quenching process, no new substances were observed by UV absorption spectroscopy. Additionally, no significant changes in the 1H NMR spectra of the TE-CDs were noted before and after the addition of TC, indicating the absence of an interaction between the TE-CDs and TC. Therefore, the quenching mechanism may involve dynamic quenching. The selectivity and anti-interference ability of the developed method were evaluated; in the presence of interfering substances, TC quenched the fluorescence of the TE-CDs, indicating that the TE-CDs had good selectivity and anti-interference performance towards TC. The method was applied to the quantitative detection of TC in medical wastewater, with recoveries of 96.5%-119.8% and relative standard deviations of 0.8%-2.6%. In conclusion, the analytical performance of the proposed method is comparable with that of previously reported detection methods; moreover, the method has the advantages of low operational cost, simple preparation process, time-saving, and good repeatability. Therefore, the TE-CDs can be used as chemical sensors for the detection of TC in medical wastewater and have good practical applications.

    Technical Notes
    Determination of 42 antimicrobials in disinfection products by dispersive solid phase extraction-high performance liquid chromatography-tandem mass spectrometry
    TONG Jiaqi, ZHU Guhuan, LAN Hangzhen, SHI Honglan, ZHU Xiaoyan, SUN Yao
    2024, 42 (11):  1077-1086.  DOI: 10.3724/SP.J.1123.2024.02018
    Abstract ( 105 )   HTML ( 20 )   PDF (2231KB) ( 80 )  

    Antimicrobials inhibit the growth and reproduction of microorganisms thereby alleviating skin and other problems caused by microorganisms. Antimicrobials are classified into different categories, including antibacterials, antifungals, and antivirals, among others, and include azoles, sulfonamides, tetracyclines, quinolones, and many other classes of synthetic and natural compound. The inappropriate or excessive use of antimicrobials can damage skin and other human organs and increase antimicrobial resistance. Relevant regulations and standards clearly state that antimicrobials are prohibited for use as ingredients in disinfection products. However, since antimicrobials enhance the disinfection or antibacterial effect of a product, with a significant short-term effect, antimicrobials are occasionally illegally added to disinfectant products, including those intended for human use. Therefore, establishing testing methods that provide technical support for enforcing regulations is an urgent objective.

    Herein, a method was established for the analysis of 42 antimicrobials in disinfection products, that is applicable to common types of disinfection-product matrix, including creams, gels, and aqueous solutions, using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) combined with dispersive solid phase extraction. The 42 antimicrobials comprise antibacterials, antifungals, and antivirals, and include seven sulfonamides, ten quinolones, three lincosamides, five tetracyclines, three macrolides, eight azoles, three purine nucleoside analogs, one furan, one nonpolyene antifungal, and one steroid. Briefly, 0.2 g of a sample was first dispersed in 2 mL of water and then extracted with 10 mL of 0.5% formic acid in acetonitrile, with 3 g of anhydrous Na2SO4 added to remove water. After centrifugation, 5 mL of the supernatant was cleaned using dispersive solid phase extraction with EMR-Lipid as the adsorbent. Lipids, waxes, surfactants, and moisturizing lubricants are commonly used as cream and gel matrices. Matrix substances containing long carbon chains dissolved in acetonitrile were removed using the EMR-Lipid adsorbent. Target analytes were separated on a Poroshell 120 EC-C18 analytical chromatography column (150 mm×3.0 mm, 2.7 μm), with 0.1% formic acid in acetonitrile and 0.1% formic acid aqueous solution used as mobile phases under gradient-elution conditions. The target analytes in the test solution were detected in positive ionization (ESI+) and multi-reaction-monitoring (MRM) modes. Analytes were characterized in terms of their retention times and selected ions, and quantified using the external-standard method. The main factors affecting method response, recovery, and sensitivity, such as the extraction method and solvent, purification method and adsorbent, mobile phase, and MS conditions, were examined during sample pretreatment and instrumental analysis. The 42 antimicrobials were effectively separated under the optimized experimental conditions; the target compounds exhibited linear working curves in the 0.25-5.0 mg/kg concentration range, with correlation coefficients (r) greater than 0.99. Limits of detection (LODs) for the 42 antimicrobials were determined from the signal-to-noise ratios (S/N) of their chromatographic peaks. LODs of 0.03-0.10 mg/kg were determined for the three matrices using 0.2-g samples and 10-mL test solution. Recoveries of 80.3-109.8%, with relative standard deviations (RSDs) of less than 9.8%, were obtained by determining three levels of each target analyte added to the three blank matrices; this process was repeated for six parallel samples. The developed method was used to analyze antimicrobials in commercially available disinfection products, with two sample batches testing positive. The established method is simple, accurate, precise, and suitable for the rapid screening and quantification of antimicrobials in disinfection products. This study provides powerful technical support for regulating the illegal addition of related antimicrobials to disinfection products.

    Preparation of chiral metal organic framework modified silica monolithic capillary column and its application in enantioseparations of chiral drugs
    SONG Ruike, LIAO Gan, LIN Jiali, WU Jialian, HUANG Lu
    2024, 42 (11):  1087-1093.  DOI: 10.3724/SP.J.1123.2024.01020
    Abstract ( 96 )   HTML ( 11 )   PDF (3613KB) ( 35 )  
    Supporting Information

    Metal organic frameworks (MOFs) are crystalline compounds composed of metal ions (or metal clusters) and organic ligands. Chiral MOFs have been successfully utilized as novel materials for the separation of chiral enantiomers by chromatography, demonstrating excellent chiral separation performance. In this study, a chiral MOF-modified silica monolithic capillary column was used for pressurized capillary electrochromatography. First, a chiral MOF (Co-glycyl-L-glutamic acid, Co-L-GG) was synthesized. This MOF was then used to prepare a chiral capillary monolithic column via a one-step in situ polymerization method. The optimal conditions for preparing the chiral capillary monolithic column were determined as follows: Co-L-GG amount, 5 mg; polyethylene glycol amount, 0.96 mg; tetramethoxysilane dosage, 3.6 mL; trimethoxymethylsilane dosage, 0.4 mL. Next, the effects of the separation conditions on the separation of chiral drugs were investigated. Under the conditions of an applied voltage of -20 kV and a mobile phase consisting of acetonitrile and 20 mmol/L disodium hydrogen phosphate (80∶20, v/v), six chiral drugs were separated within 3 min, with baseline separation achieved for amlodipine, fluvastatin, and tryptophan. Moreover, the prepared chiral capillary monolithic column exhibited good reproducibility and stability. Finally, molecular docking studies were conducted using AutoDock to explore the chiral recognition mechanism, and the results were analyzed using Discovery Studio. The results indicated that larger differences in binding free energy between Co-L-GG and the enantiomers of the chiral drugs were correlated with higher enantioselectivity factors. However, this correlation did not necessarily lead to an increase in resolution. Co-L-GG, which is enriched with primary amines, secondary amines, and carbonyl groups, demonstrated enantiomeric recognition capability. In conclusion, this study demonstrates that chiral MOFs can be effectively used as chiral functional monomers to prepare chiral monolithic capillary columns, highlighting their significant potential for the separation and analysis of chiral compounds. The comprehensive exploration of the synthesis, characterization, and applications of these MOFs will help provide valuable insights into the development of advanced separation technologies.

    Teaching Research
    Comprehensive undergraduate experiment: determination of phenylurea herbicide in tea by magnetic solid-phase extraction-high performance liquid chromatography
    LIU Zhuang, SU Ying, YANG Dongwei, LI Limei, XU Xu
    2024, 42 (11):  1094-1100.  DOI: 10.3724/SP.J.1123.2024.04035
    Abstract ( 97 )   HTML ( 20 )   PDF (3571KB) ( 73 )  

    Against the backdrop of the Ministry of Education’s promotion of new agricultural science construction and interdisciplinary integration, a comprehensive chemistry experiment to enhance the practical skills of students in preparing biomass functional materials and detecting pesticide residues was designed. Natural loofah was utilized as a precursor in synthesizing nitrogen-doped magnetic porous carbon materials, which were then applied in a magnetic solid-phase extraction (MSPE) technique. Subsequently, high performance liquid chromatography (HPLC) was employed to analyze and detect the phenylurea herbicide monuron in tea. The experimental process included material synthesis, characterization, optimization of the MSPE conditions, adsorption performance studies, and HPLC, reflecting its scientific, systematic nature and providing a comprehensive learning platform for students. It not only deepens student understanding of the relationship between material characterization and application, but also improves their experimental design and problem-solving capacities. Moreover, by integrating cutting-edge science, ideological and political education, and experimental training, it not only stimulates student interest in scientific research and cultivates innovative thinking and practical skills, but also strengthens their feelings of social responsibility and historical mission. This approach realizes the comprehensive educational goals of experimental training and lays the foundation for nurturing high-quality talent with a global perspective and sense of social responsibility.